Estimation and testing linearity for non-linear mixed poisson autoregressions

被引:17
|
作者
Christou, Vasiliki [1 ]
Fokianos, Konstantinos [1 ]
机构
[1] Univ Cyprus, Dept Math & Stat, CY-1678 Nicosia, Cyprus
来源
ELECTRONIC JOURNAL OF STATISTICS | 2015年 / 9卷 / 01期
关键词
Bootstrap; chi-square; contraction; identifiability; quasi maximum likelihood; score test; threshold model; MAXIMUM-LIKELIHOOD-ESTIMATION; VALUED GARCH MODELS; TIME-SERIES MODELS; QUASI-LIKELIHOOD; DEPENDENT SEQUENCES; NUISANCE PARAMETER; COUNT DATA; REGRESSION; CONSISTENCY; ERGODICITY;
D O I
10.1214/15-EJS1044
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
Non-linear mixed Poisson autoregressive models are studied for the analysis of count time series. Given a correct mean specification of the model, we discuss quasi maximum likelihood estimation based on Poisson log-likelihood function. A score testing procedure for checking linearity of the mean process is developed. We consider the cases of identifiable and non identifiable parameters under the null hypothesis. When the parameters are identifiable then a chi-square approximation to the distribution of the score test is obtained. In the case of non identifiable parameters, a supremum score type test statistic is employed for checking linearity of the mean process. The methodology is applied to simulated and real data.
引用
收藏
页码:1357 / 1377
页数:21
相关论文
共 50 条