Existence and nonexistence of positive solutions for a class of superlinear semipositone systems

被引:16
|
作者
Chhetri, Maya [2 ]
Girg, Petr [1 ]
机构
[1] Univ W Bohemia, Dept Math & Stat, KMA FAV, CZ-30614 Plzen, Czech Republic
[2] Univ N Carolina, Dept Math & Stat, Greensboro, NC 27402 USA
关键词
Laplacian; Systems; Semipositone; Superlinear; Positive solutions; Nonexistence; Bifurcation from infinity; SEMILINEAR ELLIPTIC-SYSTEMS; EQUATIONS; SYMMETRY;
D O I
10.1016/j.na.2009.03.070
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We consider an elliptic system of the form -Delta u = lambda f(v) in Omega} -Delta v = lambda g(u) in Omega u = 0= v on partial derivative Omega, where lambda > 0 is a parameter, Omega is a bounded domain in R-N with smooth boundary partial derivative Omega. Here the nonlinearitiesf, g : [0, infinity) -> R are C-1 proportional to(0,sigma) , 0 < sigma < 1, functions that are superlinear at infinity and satisfy f(0) < 0 and g(0) < 0. We prove that the system has a positive solution for lambda small when Omega is convex with C-3 boundary and no positive solution for lambda large when Omega is a general bounded domain with C-2,C-beta boundary. Moreover, we show that there exists a closed connected subset of positive solutions bifurcating from infinity at lambda = 0. (C) 2009 Elsevier Ltd. All rights reserved.
引用
收藏
页码:4984 / 4996
页数:13
相关论文
共 50 条
  • [1] Existence of positive solutions for a class of superlinear semipositone systems
    Chhetri, Maya
    Girg, Petr
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2013, 408 (02) : 781 - 788
  • [2] Positive solutions for a class of superlinear semipositone systems on exterior domains
    Abraham Abebe
    Maya Chhetri
    Lakshmi Sankar
    R Shivaji
    [J]. Boundary Value Problems, 2014
  • [3] Positive solutions for a class of superlinear semipositone systems on exterior domains
    Abebe, Abraham
    Chhetri, Maya
    Sankar, Lakshmi
    Shivaji, R.
    [J]. BOUNDARY VALUE PROBLEMS, 2014, : 1 - 9
  • [4] Existence of positive solutions for a class of p-Laplacian superlinear semipositone problems
    Chhetri, M.
    Drabek, P.
    Shivaji, R.
    [J]. PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2015, 145 (05) : 925 - 936
  • [5] Existence and nonexistence of radial positive solutions of superlinear elliptic systems
    Ahammou, A
    [J]. PUBLICACIONS MATEMATIQUES, 2001, 45 (02) : 399 - 419
  • [6] On the Existence of Positive Solutions for a Class of Infinite Semipositone Systems with Singular Weights
    Rasouli, S. H.
    [J]. THAI JOURNAL OF MATHEMATICS, 2013, 11 (01): : 103 - 110
  • [7] Existence of positive radial solutions for superlinear, semipositone problems on the exterior of a ball
    Dhanya, R.
    Morris, Q.
    Shivaji, R.
    [J]. JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2016, 434 (02) : 1533 - 1548
  • [8] On the existence of positive solutions for a class of infinite semipositone problems
    Rasouli, S.H.
    Ghaemi, M.B.
    Afrouzi, G.A.
    Choubin, M.
    [J]. UPB Scientific Bulletin, Series A: Applied Mathematics and Physics, 2014, 76 (04): : 27 - 34
  • [9] ON THE EXISTENCE OF POSITIVE SOLUTIONS FOR A CLASS OF INFINITE SEMIPOSITONE PROBLEMS
    Rasouli, S. H.
    Ghaemi, M. B.
    Afrouzi, G. A.
    Choubin, M.
    [J]. UNIVERSITY POLITEHNICA OF BUCHAREST SCIENTIFIC BULLETIN-SERIES A-APPLIED MATHEMATICS AND PHYSICS, 2014, 76 (04): : 27 - 34
  • [10] EXISTENCE AND NONEXISTENCE OF POSITIVE RADIAL SOLUTIONS FOR A CLASS OF SEMILINEAR ELLIPTIC SYSTEMS
    ZHONG Jinbiao CHEN Zuchi(Department of Mathematics
    [J]. Journal of Systems Science & Complexity, 2004, (03) : 325 - 331