Enzymatic degradation of biodegradable polyester composites of Poly(L-lactic acid) and poly(ε-caprolactone)

被引:30
|
作者
Tsuji, Hideto
Kidokoro, Yuki
Mochizuki, Masatusgu
机构
[1] Toyohashi Univ Technol, Fac Engn, Dept Ecol Engn, Toyohashi, Aichi 4418580, Japan
[2] Unitika Co Ltd, Ctr Res & Dev, Uji, Kyoto 6110021, Japan
关键词
biodegradable polyesters; biodegradation; composites; enzymatic degradation; fiber-reinforced plastics;
D O I
10.1002/mame.200600276
中图分类号
T [工业技术];
学科分类号
08 ;
摘要
Two different types of biodegradable polyester composites, PLLA fiber-reinforced PCL and PCL/PLLA blend films were prepared at PCL/PLLA ratio of 88/12 (w/w), together with pure PCL and PLLA films. Their enzymatic degradation was investigated by the use of Rhizopus arrhizus lipase and proteinase K as degradation enzymes for PCL and PLLA chains, respectively. In the FRP film, the presence of PLLA fibers accelerated the lipase-catalyzed enzymatic degradation of PCL matrix compared with that in the pure PCL film, whereas in the blend film, the presence of PLLA chains dissolved in the continuous PCL-rich domain retarded the lipase-catalyzed enzymatic degradation of PCL chains. In contrast, in the FRP film, the proteinase K-catalyzed enzymatic degradation of PLLA fibers was disturbed compared with that of the pure PLLA film, whereas in the blend film, the proteinase K-catalyzed enzymatic degradation rate of particulate PLLA-rich domains was higher than that of pure PLLA film. The reasons for aforementioned enhanced and disturbed enzymatic degradation are discussed.
引用
收藏
页码:1245 / 1254
页数:10
相关论文
共 50 条
  • [31] Development of novel biodegradable poly (L-lactic acid) stent
    Igaki, Keiji
    Iwamoto, Masaharu
    Yamane, Hideki
    Saito, Kenji
    Zairyo/Journal of the Society of Materials Science, Japan, 2000, 49 (09) : 1030 - 1035
  • [32] Cell adhesion behavior of poly(ε-caprolactone)/poly(L-lactic acid) nanofibers scaffold
    Khatri, Zeeshan
    Jatoi, Abdul Wahab
    Ahmed, Farooq
    Kim, Ick-Soo
    MATERIALS LETTERS, 2016, 171 : 178 - 181
  • [33] Enzymatic, alkaline, and autocatalytic degradation of poly(L-lactic acid): Effects of biaxial orientation
    Tsuji, H
    Ogiwara, M
    Saha, SK
    Sakaki, T
    BIOMACROMOLECULES, 2006, 7 (01) : 380 - 387
  • [34] Thermally induced crystallization and enzymatic degradation studies of poly (L-lactic acid) films
    Vasanthan, Nadarajah
    Gezer, Hande
    JOURNAL OF APPLIED POLYMER SCIENCE, 2013, 127 (06) : 4395 - 4401
  • [35] Degradation of Poly(D,L-lactic acid)-b-poly(ethylene glycol) Copolymer and Poly(L-lactic acid) by Electron Beam Irradiation
    Miao, Peikai
    Wu, Dimeng
    Zeng, Ke
    Zhao, Chun'e
    Xu, Guoliang
    Huang, Zhifu
    Yang, Gang
    JOURNAL OF APPLIED POLYMER SCIENCE, 2011, 120 (01) : 509 - 517
  • [36] Thermal properties and crystallization of biodegradable poly(L-lactic acid) and poly(β-hydroxynonanzoate) blend
    Park, SH
    Kim, YB
    Lee, DS
    POLYMER-KOREA, 2000, 24 (04) : 477 - 487
  • [37] Hydrolytic degradation of poly(l-lactic acid)/poly(methyl methacrylate) blends
    Boudaoud, Naila
    Benali, Samira
    Mincheva, Rosica
    Satha, Hamid
    Raquez, Jean-Marie
    Dubois, Philippe
    POLYMER INTERNATIONAL, 2018, 67 (10) : 1393 - 1400
  • [38] Biodegradable Poly(L-lactic acid)/TiO2 Nanocomposites: Thermal Properties and Degradation
    Buzarovska, Aleksandra
    Grozdanov, Anita
    JOURNAL OF APPLIED POLYMER SCIENCE, 2012, 123 (04) : 2187 - 2193
  • [39] Poly(D,L-lactic acid)/poly (ε-caprolactone) blend membranes:: preparation and morphological characterisation
    Aslan, S
    Calandrelli, L
    Laurienzo, P
    Malinconico, M
    Migliaresi, C
    JOURNAL OF MATERIALS SCIENCE, 2000, 35 (07) : 1615 - 1622
  • [40] Synthesis and characterization of poly(L-lactic acid)-poly(ε-caprolactone) multiblock copolymers by melt polycondensation
    Teng, CQ
    Kai, Y
    Ping, J
    Yu, MH
    JOURNAL OF POLYMER SCIENCE PART A-POLYMER CHEMISTRY, 2004, 42 (20) : 5045 - 5053