BIFURCATION OF POSITIVE SOLUTIONS FOR THE ONE-DIMENSIONAL (p, q)-LAPLACE EQUATION

被引:0
|
作者
Kajikiya, Ryuji [1 ]
Tanaka, Mieko [2 ]
Tanaka, Satoshi [3 ]
机构
[1] Saga Univ, Fac Sci & Engn, Dept Math, Saga 8408502, Japan
[2] Tokyo Univ Sci, Dept Math, Shinjyuku Ku, Kagurazaka 1-3, Tokyo 1628601, Japan
[3] Okayama Univ Sci, Fac Sci, Dept Appl Math, Okayama 700005, Japan
关键词
Bifurcation; positive solution; (p; q)-Laplace equation; time map; multiple solutions; EXACT MULTIPLICITY; NODAL SOLUTIONS; EXISTENCE; DIAGRAMS;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this article, we study the bifurcation of positive solutions for the one-dimensional (p, q)-Laplace equation under Dirichlet boundary conditions. We investigate the shape of the bifurcation diagram and prove that there exist five different types of bifurcation diagrams. As a consequence, we prove the existence of multiple positive solutions and show the uniqueness of positive solutions for a bifurcation parameter in a certain range.
引用
收藏
页数:37
相关论文
共 50 条