Techno-economic analysis of four concepts for thermal decomposition of methane: Reduction of CO2 emissions in natural gas combustion

被引:52
|
作者
Keipi, Tiina [1 ]
Hankalin, Ville [2 ]
Nummelin, Jaakko [2 ]
Raiko, Risto [1 ]
机构
[1] Tampere Univ Technol, Dept Chem & Bioengn, POB 541, Tampere 33101, Finland
[2] AF Consult, Bertel Jungin Aukio 9, Espoo 02600, Finland
关键词
Carbon capture; Natural gas; Carbon black; Methane decomposition; Techno-economic analysis; Carbon dioxide; COMBINED-CYCLE; HYDROGEN; HYDROCARBON; CAPTURE; LEAKAGE; CARBON;
D O I
10.1016/j.enconman.2015.11.057
中图分类号
O414.1 [热力学];
学科分类号
摘要
This paper presents a techno-economic analysis of four concepts that apply the thermal decomposition of methane (TDM) with the aim of reducing carbon dioxide emissions in natural gas combustion. Different technical solutions are applied to convert methane in natural gas to gaseous hydrogen, which is corn busted to produce electricity with a steam power cycle, and solid carbon, which is assumed to be sold as carbon black. The cost of electricity production and the potential to reduce CO2 emissions in each concept were evaluated and compared to the reference case of direct methane combustion. With a moderate emission allowance price (20 epsilon/t(CO2)) and product carbon price (500 epsilon/t(carbon)) the cost of electricity production in the concepts was 12-58% higher than in the reference case. However, the price of product carbon had a significant effect on the feasibility of the concepts. Thus, the methane burner, which showed the best performance, produced 17% less CO2 emissions per MWhe and had a smaller cost of electricity production than the reference case already with the carbon price of 600-700 epsilon t(carbon). (C) 2015 Elsevier Ltd. All rights reserved.
引用
收藏
页码:1 / 12
页数:12
相关论文
共 50 条
  • [41] Techno-economic analysis of adiabatic four-stage CO2 methanation process for optimization and evaluation of power-to-gas technology
    Park, Sungho
    Choi, Kwangsoon
    Lee, Changhyeong
    Kim, Suhyun
    Yoo, Youngdon
    Chang, Daejun
    INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2021, 46 (41) : 21303 - 21317
  • [42] Techno-economic analysis of advanced stripper configurations for post-combustion CO2 capture amine processes
    Oh, Hyun-Taek
    Ju, Youngsan
    Chung, Kyounghee
    Lee, Chang-Ha
    ENERGY, 2020, 206
  • [43] Advanced Steam Reforming of Bio-Oil with Carbon Capture: A Techno-Economic and CO2 Emissions Analysis
    Reeve, Jennifer
    Grasham, Oliver
    Mahmud, Tariq
    Dupont, Valerie
    CLEAN TECHNOLOGIES, 2022, 4 (02): : 309 - 328
  • [44] Techno-economic analysis of CO2 conditioning processes in a coal based oxy-combustion power plant
    Fu, Chao
    Gundersen, Truls
    INTERNATIONAL JOURNAL OF GREENHOUSE GAS CONTROL, 2012, 9 : 419 - 427
  • [45] Techno-Economic Analysis of a Gas-to-Liquid Process with Different Placements of a CO2 Removal Unit
    Rafiee, Ahmad
    Hillestad, Magne
    CHEMICAL ENGINEERING & TECHNOLOGY, 2012, 35 (03) : 420 - 430
  • [46] Techno-economic analysis of CO2 capture from flue gas by amine absorption and membrane technology
    Hussain, A. (arshad.hussain@scme.nust.edu.pk), 1600, Begell House Inc. (14):
  • [47] A techno-economic evaluation approach to the electrochemical reduction of CO2 for formic acid manufacture
    Rumayor, M.
    Dominguez-Ramos, A.
    Perez, P.
    Irabien, A.
    JOURNAL OF CO2 UTILIZATION, 2019, 34 : 490 - 499
  • [48] Techno-Economic Analysis of Integrating a CO2 Hydrogenation-to-Methanol Unit with a Coal-to-Methanol Process for CO2 Reduction
    Zhang, Jingpeng
    Li, Zhengwen
    Zhang, Zhihe
    Liu, Rong
    Chu, Bozhao
    Yan, Binhang
    ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2020, 8 (49) : 18062 - 18070
  • [49] Techno-economic assessment of optimised vacuum swing adsorption for post-combustion CO2 capture from steam-methane reformer flue gas
    Subraveti, Sai Gokul
    Roussanaly, Simon
    Anantharaman, Rahul
    Riboldi, Luca
    Rajendran, Arvind
    SEPARATION AND PURIFICATION TECHNOLOGY, 2021, 256
  • [50] Techno-economic analysis of CO2 cryogenic distillation from high CO2 content gas field: A case study in Indonesia
    Anugraha, Rendra Panca
    Pratiwi, Vibianti Dwi
    Renanto, Renanto
    Juwari, Juwari
    Islami, Annisa Nurul
    Bakhtiar, Muhammad Yusuf
    CHEMICAL ENGINEERING RESEARCH & DESIGN, 2024, 202 : 226 - 234