High-performance functional Renormalization Group calculations for interacting fermions

被引:50
|
作者
Lichtenstein, J. [1 ]
de la Pena, D. Sanchez [1 ]
Rohe, D. [2 ]
Di Napoli, E. [2 ,3 ,6 ]
Honerkamp, C. [1 ,4 ]
Maier, S. A. [1 ,5 ]
机构
[1] Rhein Westfal TH Aachen, Inst Theoret Solid State Phys, D-52074 Aachen, Germany
[2] Forschungszentrum Julich, Julich Supercomp Ctr, D-52425 Julich, Germany
[3] Rhein Westfal TH Aachen, Aachen Inst Adv Study Computat Engn Sci AICES, D-52056 Aachen, Germany
[4] Julich Aachen Res Alliance Fundamentals Future In, JARA FIT, Julich, Germany
[5] Univ Cologne, Inst Theoret Phys, D-50937 Cologne, Germany
[6] JARA HPC, D-52425 Julich, Germany
关键词
functional Renormalization Group; Interacting fermions; Hybrid parallelization; Hubbard model;
D O I
10.1016/j.cpc.2016.12.013
中图分类号
TP39 [计算机的应用];
学科分类号
081203 ; 0835 ;
摘要
We derive a novel computational scheme for functional Renormalization Group (fRG) calculations for interacting fermions on 2D lattices. The scheme is based on the exchange parametrization fRG for the twofermion interaction, with additional insertions of truncated partitions of unity. These insertions decouple the fermionic propagators from the exchange propagators and lead to a separation of the underlying equations. We demonstrate that this separation is numerically advantageous and may pave the way for refined, large-scale computational investigations even in the case of complex multiband systems. Furthermore, on the basis of speedup data gained from our implementation, it is shown that this new variant facilitates efficient calculations on a large number of multi-core CPUs. We apply the scheme to the t, t' Hubbard model on a square lattice to analyze the convergence of the results with the bond length of the truncation of the partition of unity. In most parameter areas, a fast convergence can be observed. Finally, we compare to previous results in order to relate our approach to other fRG studies. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:100 / 110
页数:11
相关论文
共 50 条
  • [21] Functional renormalization group for fermions on a one dimensional lattice at arbitrary filling
    Desoppi, Lucas
    Dupuis, Nicolas
    Bourbonnais, Claude
    SCIPOST PHYSICS, 2024, 17 (02):
  • [22] Block renormalization group in a formalism with lattice wavelets: Correlation function formulas for interacting fermions
    Pereira, E
    Procacci, A
    ANNALS OF PHYSICS, 1997, 255 (01) : 19 - 33
  • [23] Functional renormalization group approach for inhomogeneous interacting Fermi systems
    Bauer, Florian
    Heyder, Jan
    von Delft, Jan
    PHYSICAL REVIEW B, 2014, 89 (04)
  • [24] Condensate density of interacting bosons: A functional renormalization group approach
    Eichler, Christopher
    Hasselmann, Nils
    Kopietz, Peter
    PHYSICAL REVIEW E, 2009, 80 (05):
  • [25] Functional renormalization-group approach to interacting bosons at zero temperature
    Sinner, Andreas
    Hasselmann, Nils
    Kopietz, Peter
    PHYSICAL REVIEW A, 2010, 82 (06)
  • [26] Frequency-dependent functional renormalization group for interacting fermionic systems
    Yirga, Nahom K.
    Campbell, David K.
    PHYSICAL REVIEW B, 2021, 103 (23)
  • [27] A functional renormalization group approach to zero-dimensional interacting systems
    Hedden, R
    Meden, V
    Pruschke, T
    Schönhammer, K
    JOURNAL OF PHYSICS-CONDENSED MATTER, 2004, 16 (29) : 5279 - 5296
  • [28] Renormalization group approach to two-dimensional Coulomb interacting Dirac fermions with random gauge potential
    Vafek, Oskar
    Case, Matthew J.
    PHYSICAL REVIEW B, 2008, 77 (03):
  • [29] Renormalization group approach to stability of two-dimensional interacting type-II Dirac fermions
    Huang, Ze-Min
    Zhou, Jianhui
    Shen, Shun-Qing
    PHYSICAL REVIEW B, 2017, 95 (19)
  • [30] Holographic renormalization group with fermions and form fields
    Kalkkinen, J
    Martelli, D
    NUCLEAR PHYSICS B, 2001, 596 (1-2) : 415 - 438