Detection and Characterization of Intrusions to Network Parameter Data in Electric Power Systems

被引:18
|
作者
Molzahn, Daniel K. [1 ]
Wang, Jianhui [2 ]
机构
[1] Argonne Natl Lab, Div Energy Syst, Lemont, IL 60439 USA
[2] Southern Methodist Univ, Dept Elect Engn, Dallas, TX 75275 USA
关键词
Cybersecurity; optimal power flow; DATA-INJECTION ATTACKS; STATE ESTIMATION; DATA INTEGRITY; MITIGATION; PROTECTION; MODEL;
D O I
10.1109/TSG.2018.2843721
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Combating cyberattacks is an emerging challenge in maintaining the reliable and economic operation of electric power systems. Possible cyberattacks include intrusions to the parameter data at a control center. In this class of attacks, algorithms at the control center are correctly executed, but the attacker's modification of the associated parameter data yields improper results. This paper proposes an algorithm for detecting and characterizing cyberattacks to network parameter data, with specific application to optimal power flow problems. The proposed algorithm evaluates whether historical operating point data are consistent with the network parameters. Inconsistencies indicating potential cyberattacks are characterized using historical operational data (power injections and voltage phasors) along with network parameter data. Simulated test cases illustrate the proposed algorithm's detection and characterization capabilities.
引用
收藏
页码:3919 / 3928
页数:10
相关论文
共 50 条
  • [11] Test models of electric power dispatching data network
    Li, Qin
    Lu, Chanyan
    Huo, Xuesong
    Hu, Ting
    He, Xiaoyang
    Huang, Xin
    Dianli Xitong Zidonghua/Automation of Electric Power Systems, 2015, 39 (01): : 187 - 193
  • [12] Applications of Complex Network Analysis in Electric Power Systems
    Saleh, Mahmoud
    Esa, Yusef
    Mohamed, Ahmed
    ENERGIES, 2018, 11 (06)
  • [13] An Efficient Detection Mechanism of Network Intrusions in IoT Environments Using Autoencoder and Data Partitioning
    Xiao, Yiran
    Feng, Yaokai
    Sakurai, Kouichi
    COMPUTERS, 2024, 13 (10)
  • [14] CHARACTERIZATION AND DETECTION OF PARAMETER VARIATIONS OF NONLINEAR MECHANICAL SYSTEMS
    KESARAJU, RV
    NOAH, ST
    NONLINEAR DYNAMICS, 1994, 6 (04) : 433 - 457
  • [15] A Hierarchical Machine Learning Method for Detection and Visualization of Network Intrusions from Big Data
    Wu, Jinrong
    Nguyen, Su
    Kempitiya, Thimal
    Alahakoon, Damminda
    TECHNOLOGIES, 2024, 12 (10)
  • [16] Using data field to analyze network intrusions
    Xie, Feng
    Bai, Shuo
    INFORMATION SECURITY PRACTICE AND EXPERIENCE, PROCEEDINGS, 2006, 3903 : 78 - 89
  • [17] Convexification of bad data and topology error detection and identification problems in AC electric power systems
    Weng, Yang
    Ilic, Marija D.
    Li, Qiao
    Negi, Rohit
    IET GENERATION TRANSMISSION & DISTRIBUTION, 2015, 9 (16) : 2760 - 2767
  • [18] Hybrid intelligent systems for detecting network intrusions
    Panda, Mrutyunjaya
    Abraham, Ajith
    Patra, Manas Ranjan
    SECURITY AND COMMUNICATION NETWORKS, 2015, 8 (16) : 2741 - 2749
  • [19] Inventory of Load Models in Electric Power Systems via Parameter Estimation
    Wedeward, Kevin
    Adkins, Chris
    Schaffer, Steve
    Smith, Michael
    Patel, Amit
    ENGINEERING LETTERS, 2015, 23 (01)
  • [20] Methodologies for parameter and state estimation in electric power systems: A comparative analysis
    Romay, Omar
    Fuerte-Esquivel, Claudio R.
    Zamora-Cardenas, Enrique A.
    Gutierrez-Martinez, Victor J.
    2019 IEEE INTERNATIONAL AUTUMN MEETING ON POWER, ELECTRONICS AND COMPUTING (ROPEC 2019), 2019,