Bregman Distance to L1 Regularized Logistic Regression

被引:0
|
作者
Das Gupta, Mithun [1 ]
Huang, Thomas S. [1 ]
机构
[1] Univ Illinois, Urbana, IL USA
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
In this work we investigate the relationship between Bregman distances and regularized Logistic Regression model. We convert L1-regularized logistic regression (LR) into more general Bregman divergence framework and propose a primal-dual method based algorithm for learning the parameters of the model. The proposed method utilizes L1 regularization to incorporate parameter sparsity into the divergence minimization scheme. We perform tests on public domain data sets and produce results which are amongst the best reported.
引用
收藏
页码:2577 / 2580
页数:4
相关论文
共 50 条
  • [31] A Survey of L1 Regression
    Vidaurre, Diego
    Bielza, Concha
    Larranaga, Pedro
    INTERNATIONAL STATISTICAL REVIEW, 2013, 81 (03) : 361 - 387
  • [32] Solution of a Bivariate l1 Regularized Problem
    Bayram, Ilker
    IEEE SIGNAL PROCESSING LETTERS, 2016, 23 (05) : 653 - 657
  • [33] Distance Metric Learning based on Different l1 Regularized Metric Matrices in Fach Category
    Mikawa, Kenta
    Kobayashi, Manabu
    Goto, Masayuki
    Fiirasawa, Shigeichi
    PROCEEDINGS OF 2016 INTERNATIONAL SYMPOSIUM ON INFORMATION THEORY AND ITS APPLICATIONS (ISITA 2016), 2016, : 285 - 289
  • [34] Smoothing group L1/2 regularized discriminative broad learning system for classification and regression
    Yu, Dengxiu
    Kang, Qian
    Jin, Junwei
    Wang, Zhen
    Li, Xuelong
    PATTERN RECOGNITION, 2023, 141
  • [35] A Proposal of l1 Regularized Distance Metric Learning for High Dimensional Sparse Vector Space
    Mikawa, Kenta
    Kobayashi, Manabu
    Goto, Masayuki
    Hirasawa, Shigeichi
    2014 IEEE INTERNATIONAL CONFERENCE ON SYSTEMS, MAN AND CYBERNETICS (SMC), 2014, : 1985 - 1990
  • [36] IS ORDERED WEIGHTED l1 REGULARIZED REGRESSION ROBUST TO ADVERSARIAL PERTURBATION? A CASE STUDY ON OSCAR
    Chen, Pin-Yu
    Vinzamuri, Bhanukiran
    Liu, Sijia
    2018 IEEE GLOBAL CONFERENCE ON SIGNAL AND INFORMATION PROCESSING (GLOBALSIP 2018), 2018, : 1174 - 1178
  • [37] Speech Emotion Recognition System Based on L1 Regularized Linear Regression and Decision Fusion
    Cen, Ling
    Yu, Zhu Liang
    Dong, Ming Hui
    AFFECTIVE COMPUTING AND INTELLIGENT INTERACTION, PT II, 2011, 6975 : 332 - +
  • [38] A DUAL SPLIT BREGMAN METHOD FOR FAST l1 MINIMIZATION
    Yang, Yi
    Moeller, Michael
    Osher, Stanley
    MATHEMATICS OF COMPUTATION, 2013, 82 (284) : 2061 - 2085
  • [39] L1投影问题的分裂Bregman方法
    李亚峰
    冯象初
    电子学报, 2010, 38 (11) : 2471 - 2475
  • [40] HIGH-DIMENSIONAL ISING MODEL SELECTION USING l1-REGULARIZED LOGISTIC REGRESSION
    Ravikumar, Pradeep
    Wainwright, Martin J.
    Lafferty, John D.
    ANNALS OF STATISTICS, 2010, 38 (03): : 1287 - 1319