Clustering-based Decentralized Optimization Approaches for DC Optimal Power Flow

被引:0
|
作者
Zhang, Kai [1 ]
Hanif, Sarmad [1 ]
Recalde, Dante [1 ]
机构
[1] TUM CREATE Ltd, 10-02 CREATE Tower, Singapore 138602, Singapore
基金
新加坡国家研究基金会;
关键词
Decentralized control; DC-OPF; ADMM; KKT; Clustering;
D O I
暂无
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
This paper studies two decentralized scheme to solve DC optimal power flow (DC-OPF). The first scheme considers the decomposition of DC-OPF based upon augmented Lagrangian relaxation and uses alternating direction method of multipliers (ADMM) algorithm to solve the consensus optimization problem. An adaptive penalty method is proposed for the ADMM algorithm to improve the convergence performance. The second scheme utilizes Karush-Kuhn-Tucker (KKT) conditions and solves the coupled linear equations of DC-OPF directly. We show the impact of different cluster formations on both schemes. Both schemes are evaluated in terms of flexibility, robustness and iteration time using the IEEE 14-bus test system.
引用
收藏
页码:110 / 115
页数:6
相关论文
共 50 条
  • [21] Robust Optimization-based DC Optimal Power Flow for Managing Wind Generation Uncertainty
    Boonchuay, Chanwit
    Tomsovic, Kevin
    Li, Fangxing
    Ongsakul, Weerakorn
    [J]. PROCEEDINGS OF THE SIXTH GLOBAL CONFERENCE ON POWER CONTROL AND OPTIMIZATION, 2012, 1499 : 31 - 35
  • [22] Data clustering based probabilistic optimal power flow in power systems
    Galvani, Sadjad
    Choogan, Mahmoud
    [J]. IET GENERATION TRANSMISSION & DISTRIBUTION, 2019, 13 (02) : 181 - 188
  • [23] CEOF: Enhanced Clustering-based Entries Optimization scheme to prevent Flow table overflow
    N. Priyanka
    T. R. Reshmi
    K. Murugan
    [J]. Wireless Networks, 2022, 28 : 69 - 83
  • [24] CEOF: Enhanced Clustering-based Entries Optimization scheme to prevent Flow table overflow
    Priyanka, N.
    Reshmi, T. R.
    Murugan, K.
    [J]. WIRELESS NETWORKS, 2022, 28 (01) : 69 - 83
  • [25] Decentralized blockchain-based consensus for Optimal Power Flow solutions
    Foti, Magda
    Mavromatis, Costas
    Vavalis, Manolis
    [J]. APPLIED ENERGY, 2021, 283
  • [26] Novel Clustering-based Hidden Markov Model (CHMM) optimization approach for optimal PMU placement
    Girish V.
    Ananthapadmanabha T.
    [J]. Russian Electrical Engineering, 2017, 88 (3) : 178 - 184
  • [27] Optimal Power Flow Based on Genetic Algorithms and Clustering Techniques
    Stankovic, Stefan
    Soder, Lennart
    [J]. 2018 POWER SYSTEMS COMPUTATION CONFERENCE (PSCC), 2018,
  • [28] Adaptive Clustering-Based Differential Evolution for Multimodal Optimization
    Duan, Danting
    Gong, Yuejiao
    Huang, Ting
    Zhang, Jun
    [J]. 2018 8TH INTERNATIONAL CONFERENCE ON INFORMATION SCIENCE AND TECHNOLOGY (ICIST 2018), 2018, : 370 - 376
  • [29] Clustering-Based Selection for the Exploration of Compiler Optimization Sequences
    Martins, Luiz G. A.
    Nobre, Ricardo
    Cardoso, Joao M. P.
    Delbem, Alexandre C. B.
    Marques, Eduardo
    [J]. ACM TRANSACTIONS ON ARCHITECTURE AND CODE OPTIMIZATION, 2016, 13 (01)
  • [30] A clustering-based review on project portfolio optimization methods
    Saiz, Miguel
    Lostumbo, Marisa A.
    Juan, Angel A.
    Lopez-Lopez, David
    [J]. INTERNATIONAL TRANSACTIONS IN OPERATIONAL RESEARCH, 2022, 29 (01) : 172 - 199