Clustering-based Decentralized Optimization Approaches for DC Optimal Power Flow

被引:0
|
作者
Zhang, Kai [1 ]
Hanif, Sarmad [1 ]
Recalde, Dante [1 ]
机构
[1] TUM CREATE Ltd, 10-02 CREATE Tower, Singapore 138602, Singapore
基金
新加坡国家研究基金会;
关键词
Decentralized control; DC-OPF; ADMM; KKT; Clustering;
D O I
暂无
中图分类号
TE [石油、天然气工业]; TK [能源与动力工程];
学科分类号
0807 ; 0820 ;
摘要
This paper studies two decentralized scheme to solve DC optimal power flow (DC-OPF). The first scheme considers the decomposition of DC-OPF based upon augmented Lagrangian relaxation and uses alternating direction method of multipliers (ADMM) algorithm to solve the consensus optimization problem. An adaptive penalty method is proposed for the ADMM algorithm to improve the convergence performance. The second scheme utilizes Karush-Kuhn-Tucker (KKT) conditions and solves the coupled linear equations of DC-OPF directly. We show the impact of different cluster formations on both schemes. Both schemes are evaluated in terms of flexibility, robustness and iteration time using the IEEE 14-bus test system.
引用
收藏
页码:110 / 115
页数:6
相关论文
共 50 条
  • [1] A clustering-based archive handling method and multi-objective optimization of the optimal power flow problem
    Akbel, Mustafa
    Kahraman, Hamdi Tolga
    Duman, Serhat
    Temel, Seyithan
    [J]. APPLIED INTELLIGENCE, 2024, 54 (22) : 11603 - 11648
  • [2] A decentralized implementation of DC optimal power flow on a network of computers
    Biskas, PN
    Bakirtzis, AG
    Macheras, NI
    Pasialis, NK
    [J]. IEEE TRANSACTIONS ON POWER SYSTEMS, 2005, 20 (01) : 25 - 33
  • [3] Decentralized DC optimal power flow model based on improved Lagrangian and consensus algorithm
    Hao, Guangtao
    Han, Xueshan
    Luo, Sibei
    Ye, Pingfeng
    Wen, Hui
    [J]. INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2024, 155
  • [4] Optimal Power Flow with Stochastic Solar Power Using Clustering-Based Multi-Objective Differential Evolution
    Lv, Derong
    Xiong, Guojiang
    Fu, Xiaofan
    Wu, Yang
    Xu, Sheng
    Chen, Hao
    [J]. ENERGIES, 2022, 15 (24)
  • [5] Multi-area coordinated decentralized DC optimal power flow
    Conejo, AJ
    Aguado, JA
    [J]. IEEE TRANSACTIONS ON POWER SYSTEMS, 1998, 13 (04) : 1272 - 1278
  • [6] Clustering-Based Statistical Global Optimization
    Gimbutiene, Grazina
    Zilinskas, Antanas
    [J]. NUMERICAL COMPUTATIONS: THEORY AND ALGORITHMS (NUMTA-2016), 2016, 1776
  • [7] A clustering-based analytical method for hybrid probabilistic and interval power flow
    Wang, Chenxu
    Liu, Dichen
    Tang, Fei
    Liu, Chengxi
    [J]. INTERNATIONAL JOURNAL OF ELECTRICAL POWER & ENERGY SYSTEMS, 2021, 126
  • [8] Decentralized Nash equilibrium seeking by strategic generators for DC optimal power flow
    Cherukuri, Ashish
    Cortes, Jorge
    [J]. 2017 51ST ANNUAL CONFERENCE ON INFORMATION SCIENCES AND SYSTEMS (CISS), 2017,
  • [9] Clustering-based approaches to SAGE data mining
    Haiying Wang
    Huiru Zheng
    Francisco Azuaje
    [J]. BioData Mining, 1
  • [10] Clustering-based approaches to SAGE data mining
    Wang, Haiying
    Zheng, Huiru
    Azuaje, Francisco
    [J]. BIODATA MINING, 2008, 1 (1)