Quasi-periodic water waves

被引:14
|
作者
Berti, Massimiliano [1 ]
Montalto, Riccardo [2 ]
机构
[1] SISSA, Via Bonomea 265, I-34136 Trieste, Italy
[2] Univ Zurich, Winterthurerstr 190, CH-8057 Zurich, Switzerland
基金
瑞士国家科学基金会;
关键词
KAM for PDEs; water waves; quasi-periodic solutions; standing waves; KAM; THEOREM; TORI;
D O I
10.1007/s11784-016-0375-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present the result and the ideas of the recent paper (Berti andMontalto, Quasi-periodic standing wave solutions of gravity-capillary water waves, http://arxiv. org/abs/1602.02411, 2016) concerning the existence of Cantor families of small-amplitude time quasi-periodic standing wave solutions (i.e. periodic and even in the space variable x) of a 2-dimensional ocean, with infinite depth, in irrotational regime, under the action of gravity and surface tension at the free boundary. These quasi-periodic solutions are linearly stable.
引用
收藏
页码:129 / 156
页数:28
相关论文
共 50 条
  • [31] Solitonic, quasi-periodic and periodic pattern of electron acoustic waves in quantum plasma
    Sahu, Biswajit
    Poria, Swarup
    Roychoudhury, Rajkumar
    ASTROPHYSICS AND SPACE SCIENCE, 2012, 341 (02) : 567 - 572
  • [32] Breather-like solitons, rogue waves, quasi-periodic/chaotic states for the surface elevation of water waves
    Hui-Min Yin
    Bo Tian
    Xin-Chao Zhao
    Chen-Rong Zhang
    Cong-Cong Hu
    Nonlinear Dynamics, 2019, 97 : 21 - 31
  • [33] Quasi-periodic and non-periodic waves in (2+1) dimensions
    Bai, C. L.
    Niu, H. J.
    EUROPEAN PHYSICAL JOURNAL D, 2008, 47 (02): : 221 - 225
  • [34] Quasi-periodic and non-periodic waves in (2+1) dimensions
    C. L. Bai
    H. J. Niu
    The European Physical Journal D, 2008, 47 : 221 - 225
  • [35] Solitonic, quasi-periodic and periodic pattern of electron acoustic waves in quantum plasma
    Biswajit Sahu
    Swarup Poria
    Rajkumar Roychoudhury
    Astrophysics and Space Science, 2012, 341 : 567 - 572
  • [36] THE CONSTRUCTION OF QUASI-PERIODIC SOLUTIONS OF QUASI-PERIODIC FORCED SCHRODINGER EQUATION
    Jiao, Lei
    Wang, Yiqian
    COMMUNICATIONS ON PURE AND APPLIED ANALYSIS, 2009, 8 (05) : 1585 - 1606
  • [37] Quasi-periodic solutions of nonlinear wave equations with quasi-periodic forcing
    Zhang, Min
    Si, Jianguo
    PHYSICA D-NONLINEAR PHENOMENA, 2009, 238 (22) : 2185 - 2215
  • [38] QUASI-PERIODIC SOLUTIONS OF GENERALIZED BOUSSINESQ EQUATION WITH QUASI-PERIODIC FORCING
    Shi, Yanling
    Xu, Junxiang
    Xu, Xindong
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2017, 22 (06): : 2501 - 2519
  • [39] Space Quasi-periodic Standing Waves for Nonlinear Schrodinger Equations
    Wang, W. -M.
    COMMUNICATIONS IN MATHEMATICAL PHYSICS, 2020, 378 (02) : 783 - 806
  • [40] NONRECIPROCAL PROPAGATION OF SURFACE-WAVES IN QUASI-PERIODIC SUPERLATTICES
    JOHNSON, BL
    CAMLEY, RE
    PHYSICAL REVIEW B, 1991, 44 (03): : 1225 - 1231