Quasi-periodic water waves

被引:14
|
作者
Berti, Massimiliano [1 ]
Montalto, Riccardo [2 ]
机构
[1] SISSA, Via Bonomea 265, I-34136 Trieste, Italy
[2] Univ Zurich, Winterthurerstr 190, CH-8057 Zurich, Switzerland
基金
瑞士国家科学基金会;
关键词
KAM for PDEs; water waves; quasi-periodic solutions; standing waves; KAM; THEOREM; TORI;
D O I
10.1007/s11784-016-0375-z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We present the result and the ideas of the recent paper (Berti andMontalto, Quasi-periodic standing wave solutions of gravity-capillary water waves, http://arxiv. org/abs/1602.02411, 2016) concerning the existence of Cantor families of small-amplitude time quasi-periodic standing wave solutions (i.e. periodic and even in the space variable x) of a 2-dimensional ocean, with infinite depth, in irrotational regime, under the action of gravity and surface tension at the free boundary. These quasi-periodic solutions are linearly stable.
引用
收藏
页码:129 / 156
页数:28
相关论文
共 50 条
  • [1] Quasi-periodic water waves
    Massimiliano Berti
    Riccardo Montalto
    Journal of Fixed Point Theory and Applications, 2017, 19 : 129 - 156
  • [2] Spatially quasi-periodic water waves of finite depth
    Wilkening, Jon
    Zhao, Xinyu
    PROCEEDINGS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2023, 479 (2272):
  • [3] Spatially Quasi-Periodic Water Waves of Infinite Depth
    Jon Wilkening
    Xinyu Zhao
    Journal of Nonlinear Science, 2021, 31
  • [4] Traveling Quasi-periodic Water Waves with Constant Vorticity
    M. Berti
    L. Franzoi
    A. Maspero
    Archive for Rational Mechanics and Analysis, 2021, 240 : 99 - 202
  • [5] Traveling Quasi-periodic Water Waves with Constant Vorticity
    Berti, M.
    Franzoi, L.
    Maspero, A.
    ARCHIVE FOR RATIONAL MECHANICS AND ANALYSIS, 2021, 240 (01) : 99 - 202
  • [6] Spatially Quasi-Periodic Water Waves of Infinite Depth
    Wilkening, Jon
    Zhao, Xinyu
    JOURNAL OF NONLINEAR SCIENCE, 2021, 31 (03)
  • [7] Time quasi-periodic gravity water waves in finite depth
    Pietro Baldi
    Massimiliano Berti
    Emanuele Haus
    Riccardo Montalto
    Inventiones mathematicae, 2018, 214 : 739 - 911
  • [8] Time quasi-periodic gravity water waves in finite depth
    Baldi, Pietro
    Berti, Massimiliano
    Haus, Emanuele
    Montalto, Riccardo
    INVENTIONES MATHEMATICAE, 2018, 214 (02) : 739 - 911
  • [9] Waves on chains: periodic, clustered, and quasi-periodic arrangements
    Mazor, Y.
    Hadad, Y.
    Steinberg, B. Z.
    2014 INTERNATIONAL CONFERENCE ON ELECTROMAGNETICS IN ADVANCED APPLICATIONS (ICEAA), 2014, : 663 - 666
  • [10] Pure gravity traveling quasi-periodic water waves with constant vorticity
    Berti, Massimiliano
    Franzoi, Luca
    Maspero, Alberto
    COMMUNICATIONS ON PURE AND APPLIED MATHEMATICS, 2024, 77 (02) : 990 - 1064