Exploiting satellite observations for global surface albedo trends monitoring

被引:24
|
作者
Chrysoulakis, Nektarios [1 ]
Mitraka, Zina [1 ]
Gorelick, Noel [2 ]
机构
[1] Fdn Res & Technol Hellas, Inst Appl & Computat Math, Remote Sensing Lab, N Plastira 100, Iraklion 70013, Greece
[2] Google Inc, Zurich, Switzerland
关键词
REFLECTANCE DISTRIBUTION FUNCTION; BROAD-BAND ALBEDO; PRODUCT MCD43A; RETRIEVALS; VALIDATION; DROUGHT; AREA; BRDF;
D O I
10.1007/s00704-018-2663-6
中图分类号
P4 [大气科学(气象学)];
学科分类号
0706 ; 070601 ;
摘要
Surface albedo is one of the essential climate variables as it influences the radiation budget and the energy balance. Because it is used in a variety of scientific fields, from local to global scale, spatially and temporally disaggregated albedo data are required, which can be derived from satellites. Satellite observations have led to directional-hemispherical (black-sky) and bi-hemispherical (white-sky) albedo products, but time series of high spatial resolution true (blue-sky) albedo estimations at global level are not available. Here, we exploit the capabilities of Google Earth Engine (GEE) for big data analysis to derive global snow-free land surface albedo estimations and trends at a 500-m scale, using satellite observations from 2000 to 2015. Our study reveals negative albedo trends mainly in Mediterranean, India, south-western Africa and Eastern Australia, whereas positive trends mainly in Ukraine, South Russia and Eastern Kazakhstan, Eastern Asia, Brazil, Central and Eastern Africa and Central Australia. The bulk of these trends can be attributed to rainfall, changes in agricultural practices and snow cover duration. Our study also confirms that at local scale, albedo changes are consistent with land cover/use changes that are driven by anthropogenic activities.
引用
收藏
页码:1171 / 1179
页数:9
相关论文
共 50 条
  • [41] On the aerosols monitoring by satellite observations
    Emiliano Ortore
    Valerio Francione
    Clean Technologies and Environmental Policy, 2008, 10 : 137 - 145
  • [42] Observations and modeling of areal surface albedo and surface types in the Arctic
    Jaekel, Evelyn
    Becker, Sebastian
    Sperzel, Tim R.
    Niehaus, Hannah
    Spreen, Gunnar
    Tao, Ran
    Nicolaus, Marcel
    Dorn, Wolfgang
    Rinke, Annette
    Brauchle, Joerg
    Wendisch, Manfred
    CRYOSPHERE, 2024, 18 (03): : 1185 - 1205
  • [43] SATELLITE INFERRED SURFACE ALBEDO OVER NORTHWESTERN AFRICA
    ROCKWOOD, AA
    COX, SK
    JOURNAL OF THE ATMOSPHERIC SCIENCES, 1978, 35 (03) : 513 - 521
  • [44] Assessing the impact of satellite-based observations in sea surface temperature trends
    Huang, Boyin
    Liu, Chunying
    Banzon, Viva F.
    Zhang, Huai-Min
    Karl, Thomas R.
    Lawrimore, Jay H.
    Vose, Russell S.
    GEOPHYSICAL RESEARCH LETTERS, 2016, 43 (07) : 3431 - 3437
  • [45] Effect of satellite formations and imaging modes on global albedo estimation
    Nag, Sreeja
    Gatebe, Charles K.
    Miller, David W.
    de Weck, Olivier L.
    ACTA ASTRONAUTICA, 2016, 126 : 77 - 97
  • [46] GLOBAL LAND-SURFACE ALBEDO MODELING
    ROWE, CM
    INTERNATIONAL JOURNAL OF CLIMATOLOGY, 1993, 13 (05) : 473 - 495
  • [47] Exploiting the proliferation of current and future satellite observations of rivers
    Schumann, G. J-P.
    Domeneghetti, A.
    HYDROLOGICAL PROCESSES, 2016, 30 (16) : 2891 - 2896
  • [48] Using models and satellite observations to evaluate the strength of snow albedo feedback
    Fletcher, Christopher G.
    Zhao, Hongxu
    Kushner, Paul J.
    Fernandes, Richard
    JOURNAL OF GEOPHYSICAL RESEARCH-ATMOSPHERES, 2012, 117
  • [49] Global Climatology of the Daytime Surface Cooling of Urban Parks Using Satellite Observations
    Agathangelidis, Ilias
    Blougouras, Georgios
    Cartalis, Constantinos
    Polydoros, Anastasios
    Tzanis, Chris G.
    Philippopoulos, Konstantinos
    Geophysical Research Letters, 2025, 52 (02)
  • [50] Comparison of surface albedo feedback in climate models and observations
    Crook, J. A.
    Forster, P. M.
    GEOPHYSICAL RESEARCH LETTERS, 2014, 41 (05) : 1717 - 1723