Deep learning with evolutionary and genomic profiles for identifying cancer subtypes

被引:9
|
作者
Lin, Chun-Yu [1 ]
Ruan, Peiying [2 ]
Li, Ruiming [1 ]
Yang, Jinn-Moon [3 ]
See, Simon [4 ]
Song, Jiangning [5 ,6 ]
Akutsu, Tatsuya [1 ]
机构
[1] Kyoto Univ, Inst Chem Res, Bioinformat Ctr, Uji, Kyoto 6110011, Japan
[2] NVIDIA Corp Japan, NVIDIA AI Technol Ctr, Tokyo 1070052, Japan
[3] Natl Chiao Tung Univ, Inst Bioinformat & Syst Biol, Hsinchu 300, Taiwan
[4] NVIDIA Corp Singapore, NVIDIA AI Technol Ctr, Singapore 138522, Singapore
[5] Monash Univ, Monash Biomed Discovery Inst, Melbourne, Vic 3800, Australia
[6] Monash Univ, Dept Biochem & Mol Biol, Melbourne, Vic 3800, Australia
基金
英国医学研究理事会; 美国国家卫生研究院;
关键词
Cancer subtype; evolutionary conservation; deep learning; convolutional neural network; cancer genomics; gene expression; copy number alteration; HETEROGENEITY;
D O I
10.1142/S0219720019400055
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Cancer subtype identification is an unmet need in precision diagnosis. Recently, evolutionary conservation has been indicated to contain informative signatures for functional significance in cancers. However, the importance of evolutionary conservation in distinguishing cancer subtypes remains largely unclear. Here, we identified the evolutionarily conserved genes (i.e. core genes) and observed that they are primarily involved in cellular pathways relevant to cell growth and metabolisms. By using these core genes, we developed two novel strategies, namely a feature-based strategy (FES) and an image-based strategy (IMS) by integrating their evolutionary and genomic profiles with the deep learning algorithm. In comparison with the FES using the random set and the strategy using the PAM50 classifier, the core gene set-based FES achieved a higher accuracy for identifying breast cancer subtypes. The IMS and FES using the core gene set yielded better performances than the other strategies, in terms of classifying both breast cancer subtypes and multiple cancer types. Moreover, the IMS is reproducible even using different gene expression data (i.e. RNA-seq and microarray). Comprehensive analysis of eight cancer types demonstrates that our evolutionary conservation-based models represent a valid and helpful approach for identifying cancer subtypes and the core gene set offers distinguishable clues of cancer subtypes.
引用
收藏
页数:15
相关论文
共 50 条
  • [31] Searching for genomic variations in lung cancer using Deep Learning
    Arroyo Varela, M.
    Salcedo Lobera, E.
    Perez Soriano, M. P.
    Larrosa Jimenez, R.
    Bautista Moreno, R.
    EUROPEAN RESPIRATORY JOURNAL, 2022, 60
  • [32] Deep genomic and single cell molecular profiles define immunogenic pancreatic cancer
    Park, Wungki
    Umeda, Shigeaki
    O'Connor, Catherine
    Zhang, Haochen
    Sharma, Roshan
    Richards, Allison
    Zhu, Yingjie
    Karnoub, Elias-Ramzey
    Pei, Xin
    Varghese, Anna M.
    Soares, Kevin
    Sanchez, Alejandro Jimenez
    Sahin, Hulya Ozkan
    Yu, Kenneth
    Balachandran, Vinod P.
    Chou, Joanne
    Keane, Fergus
    Kelsen, David
    Basturk, Olca
    Bandlamudi, Chaitanya
    Capanu, Marinela
    Nawy, Tal
    Berger, Michael
    Chaligne, Ronan
    Abou-Alfa, Ghassan
    Reis-Filho, Jorge S.
    Riaz, Nadeem
    Pe'er, Dana
    Iacobuzio-Donahue, Christine A.
    O'Reilly, Eileen M.
    CANCER RESEARCH, 2024, 84 (02)
  • [33] Identifying homologous recombination deficiency in breast cancer: genomic instability score distributions differ among breast cancer subtypes
    Lauren Lenz
    Chris Neff
    Cara Solimeno
    Elizabeth S. Cogan
    Vandana G. Abramson
    Judy C. Boughey
    Carla Falkson
    Matthew P. Goetz
    James M. Ford
    William J. Gradishar
    Rachel C. Jankowitz
    Virginia G. Kaklamani
    P. Kelly Marcom
    Andrea L. Richardson
    Anna Maria Storniolo
    Nadine M. Tung
    Shaveta Vinayak
    Darren R. Hodgson
    Zhongwu Lai
    Simon Dearden
    Bryan T. Hennessy
    Erica L. Mayer
    Gordon B. Mills
    Thomas P. Slavin
    Alexander Gutin
    Roisin M. Connolly
    Melinda L. Telli
    Vered Stearns
    Jerry S. Lanchbury
    Kirsten M. Timms
    Breast Cancer Research and Treatment, 2023, 202 : 191 - 201
  • [34] Identifying homologous recombination deficiency in breast cancer: genomic instability score distributions differ among breast cancer subtypes
    Lenz, Lauren
    Neff, Chris
    Solimeno, Cara
    Cogan, Elizabeth S.
    Abramson, Vandana G.
    Boughey, Judy C.
    Falkson, Carla
    Goetz, Matthew P.
    Ford, James M.
    Gradishar, William J.
    Jankowitz, Rachel C.
    Kaklamani, Virginia G.
    Marcom, P. Kelly
    Richardson, Andrea L.
    Storniolo, Anna Maria
    Tung, Nadine M. M.
    Vinayak, Shaveta
    Hodgson, Darren R.
    Lai, Zhongwu
    Dearden, Simon
    Hennessy, Bryan T.
    Mayer, Erica L.
    Mills, Gordon B.
    Slavin, Thomas P.
    Gutin, Alexander
    Connolly, Roisin M.
    Telli, Melinda L.
    Stearns, Vered
    Lanchbury, Jerry S.
    Timms, Kirsten M.
    BREAST CANCER RESEARCH AND TREATMENT, 2023, 202 (01) : 191 - 201
  • [35] An Integrative Approach for Identifying Network Biomarkers of Breast Cancer Subtypes Using Genomic, Interactomic, and Transcriptomic Data
    Firoozbakht, Forough
    Rezaeian, Iman
    D'Agnillo, Michele
    Porter, Lisa
    Rueda, Luis
    Ngom, Alioune
    JOURNAL OF COMPUTATIONAL BIOLOGY, 2017, 24 (08) : 756 - 766
  • [36] Deep learning approach to identifying cancer subtypes using convolutional hyperbolic k nearest neighbours method (Apr, 10.1080/12460125.2024.2338306, 2024)
    Trpin, Alenka
    Boshkoska, Biljana Mileva
    JOURNAL OF DECISION SYSTEMS, 2024,
  • [37] Identifying Pathological Subtypes of Brain Metastasis from Lung Cancer Using MRI-Based Deep Learning Approach: A Multicenter Study
    Li, Yuting
    Yu, Ruize
    Chang, Huan
    Yan, Wanying
    Wang, Dawei
    Li, Fuyan
    Cui, Yi
    Wang, Yong
    Wang, Xiao
    Yan, Qingqing
    Liu, Xinhui
    Jia, Wenjing
    Zeng, Qingshi
    JOURNAL OF IMAGING INFORMATICS IN MEDICINE, 2024, 37 (03): : 976 - 987
  • [38] Identifying Mis-Configured Author Profiles on Google Scholar Using Deep Learning
    Tang, Jiaxin
    Chen, Yang
    She, Guozhen
    Xu, Yang
    Sha, Kewei
    Wang, Xin
    Wang, Yi
    Zhang, Zhenhua
    Hui, Pan
    APPLIED SCIENCES-BASEL, 2021, 11 (15):
  • [39] Identifying genomic islands with deep neural networks
    Rida Assaf
    Fangfang Xia
    Rick Stevens
    BMC Genomics, 22
  • [40] Identifying genomic islands with deep neural networks
    Assaf, Rida
    Xia, Fangfang
    Stevens, Rick
    BMC GENOMICS, 2021, 22 (SUPPL 3)