The cluster galaxy circular velocity function

被引:30
|
作者
Desai, V [1 ]
Dalcanton, JJ [1 ]
Mayer, L [1 ]
Reed, D [1 ]
Quinn, T [1 ]
Governato, F [1 ]
机构
[1] Univ Washington, Dept Astron, Seattle, WA 98195 USA
关键词
methods : N-body simulations; galaxies : clusters : general; galaxies : haloes; cosmology : observations; cosmology : theory; dark matter;
D O I
10.1111/j.1365-2966.2004.07778.x
中图分类号
P1 [天文学];
学科分类号
0704 ;
摘要
We present galaxy circular velocity functions (GCVFs) for 34 low-redshift (z less than or similar to 0.15) clusters identified in the Sloan Digital Sky Survey (SDSS), for 15 clusters drawn from dark matter simulations of hierarchical structure growth in a ACDM cosmology, and for similar to 22 000 SDSS field galaxies. We find that the simulations successfully reproduce the shape, amplitude and scatter in the observed distribution of cluster galaxy circular velocities. The power-law slope of the observed cluster GCVF is similar to -2.4, independent of cluster velocity dispersion. The average slope of the simulated GCVFs is somewhat steeper, although formally consistent given the errors. We find that the effects of baryons on galaxy rotation curves is to flatten the simulated cluster GCVF into better agreement with observations. The cumulative GCVFs of the simulated clusters are very similar across a wide range of cluster masses, provided individual subhalo circular velocities are scaled by the circular velocities of the parent cluster. The scatter is consistent with that measured in the cumulative, scaled observed cluster GCVF. Finally, the observed field GCVF deviates significantly from a power law, being flatter than the cluster GCVF at circular velocities less than 200 km s(-1).
引用
收藏
页码:265 / 278
页数:14
相关论文
共 50 条
  • [31] Comparing the Predicted ABELL/ACO Cluster and the MKIII Galaxy Density and Velocity Fields
    Plionis, M.
    Branchini, E.
    Zehavi, I.
    Dekel, A.
    Astrophysics and Space Science Library, (212):
  • [32] Examining the local Universe isotropy with galaxy cluster velocity dispersion scaling relations
    Pandya, A.
    Migkas, K.
    Reiprich, T.H.
    Stanford, A.
    Pacaud, F.
    Schellenberger, G.
    Lovisari, L.
    Ramos-Ceja, M.E.
    Nguyen-Dang, N.T.
    Park, S.
    Astronomy and Astrophysics, 2024, 691
  • [33] The El Gordo Galaxy Cluster Challenges ?CDM for Any Plausible Collision Velocity
    Asencio, Elena
    Banik, Indranil
    Kroupa, Pavel
    ASTROPHYSICAL JOURNAL, 2023, 954 (02):
  • [34] Deprojection technique for galaxy cluster considering the point spread function
    Wang YuSa
    Jia ShuMei
    Chen Yong
    SCIENCE CHINA-PHYSICS MECHANICS & ASTRONOMY, 2010, 53 : 183 - 186
  • [35] Measuring the intracluster medium velocity structure within the A3266 galaxy cluster
    Gatuzz, E.
    Sanders, J.
    Liu, A.
    Fabian, A.
    Pinto, C.
    Russell, H.
    Eckert, D.
    Walker, S.
    Zuhone, J.
    Mohapatra, R.
    ASTRONOMY & ASTROPHYSICS, 2024, 692
  • [37] Deprojection technique for galaxy cluster considering the point spread function
    YuSa Wang
    ShuMei Jia
    Yong Chen
    Science China Physics, Mechanics and Astronomy, 2010, 53 : 183 - 186
  • [38] Comparing the predicted Abell/ACO cluster and the MkIII galaxy density & velocity fields
    Plionis, M
    Branchini, E
    Zehavi, I
    Dekel, A
    WIDE-FIELD SPECTROSCOPY, 1997, 212 : 311 - 314
  • [39] GALAXY LUMINOSITY FUNCTION OF THE DYNAMICALLY YOUNG ABELL 119 CLUSTER: PROBING THE CLUSTER ASSEMBLY
    Lee, Youngdae
    Rey, Soo-Chang
    Hilker, Michael
    Sheen, Yun-Kyeong
    Yi, Sukyoung K.
    ASTROPHYSICAL JOURNAL, 2016, 822 (02):
  • [40] The Edinburgh-Durham Southern Galaxy Catalogue - VIII. The cluster galaxy luminosity function
    Anglo-Australian Observatory, PO Box 296, Epping, NSW 2122, Australia
    Mon. Not. R. Astron. Soc., 1 (119-138):