Phase stability and ionic conductivity of cubic xNb2O5-(11-x)Sc2O3-ZrO2 (0 ≤ x ≤4)

被引:20
|
作者
Kumar, Ashutosh [1 ]
Singh, Ram Pyar [1 ]
Singh, Shashwat [1 ]
Jaiswal, Abhishek [2 ]
Omar, Shobit [1 ]
机构
[1] Indian Inst Technol Kanpur, Dept Mat Sci & Engn, Kanpur 208016, Uttar Pradesh, India
[2] Univ Maryland, Dept Mat Sci & Engn, College Pk, MD 20742 USA
关键词
Stabilized zirconia; Scandia; Niobia; Solid electrolyte; Grain conductivity; Grain boundary conductivity; Impedance spectroscopy; SOFCs; ELECTRICAL-CONDUCTIVITY; ZIRCONIA; ELECTROLYTE; NIOBIUM; TRANSITION; BEHAVIOR; REGION;
D O I
10.1016/j.jallcom.2017.01.301
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The present work looks at the effect of Nb2O5 co-doping on the structure and conductivity of 11 mol.% Sc2O3 stabilized ZrO2 solid electrolyte for intermediate temperature solid oxide fuel cells. XPS analysis confirmed that niobium exists in 5+ valence state in the sintered stabilized ZrO2 samples. SEM study performed on sintered samples revealed that the addition of Nb2O5 not only assists in the densification of Sc2O3-ZrO2 but also leads to exaggerated grain growth. Both XRD and Raman analysis confirmed that addition of up to 1 mol.% of Nb2O5 suppresses the formation of low-conductivity rhombohedral b-phase and leads to the stabilization of cubic phase. For compositions with > 1 mol.% Nb2O5, a mixture of tetragonal and monoclinic phases was identified. Impedance spectroscopy showed that the total ionic conductivity increases significantly on co-doping with 1 mol.% Nb2O5. This increase is attributed to the enhanced sinterability and decrease in space-charge potential of Nb2O5 co-doped samples. While > 1 mol.% Nb2O5 compositions have low conductivity due to the formation of low conductivity secondary phases. (C) 2017 Elsevier B.V. All rights reserved.
引用
收藏
页码:643 / 651
页数:9
相关论文
共 50 条
  • [32] Microstructure and Phase Stability of Plasma Sprayed Sc2O3-Y2O3-ZrO2 TBCs
    Li, Q. L.
    Liu, H. F.
    Yang, W. H.
    Li, S. Q.
    Chen, H. J.
    RARE METAL MATERIALS AND ENGINEERING, 2011, 40 : 151 - 154
  • [33] Structural characteristics of melt-grown (ZrO2)0.99-x(Sc2O3)x(Yb2O3)0.01 solid solution crystals and their effect on ionic conductivity
    Kulebyakin, A. V.
    Borik, M. A.
    Kuritsyna, I. E.
    Larina, N. A.
    Lomonova, E. E.
    Milovich, F. O.
    Myzina, V. A.
    Ryabochkina, P. A.
    Skylea, E. A.
    Tabachkova, N. Yu
    Volkova, T. V.
    JOURNAL OF CRYSTAL GROWTH, 2020, 547
  • [34] Phase relations, crystal structure, and phase transformation of In1-xNb1-xTi2xO4 (0 ≤ x < 0.45) in In2O3-Nb2O5-TiO2 system
    Su, Liumei
    Fan, Xing
    Cai, Gemei
    Liu, Huashan
    Jin, Zhanpeng
    JOURNAL OF ALLOYS AND COMPOUNDS, 2015, 651 : 97 - 105
  • [35] PHASE-RELATIONSHIPS IN THE ZRO2-SC2O3 AND ZRO2-IN2O3 SYSTEMS
    SHEU, TS
    XU, J
    TIEN, TY
    JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 1993, 76 (08) : 2027 - 2032
  • [36] IONIC CONDUCTIVITY OF CUBIC SOLID SOLUTIONS IN THE SYSTEM CAO-Y2O3-ZRO2
    STRICKLER, DW
    CARLSON, WG
    JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 1964, 47 (03) : 122 - 127
  • [37] Effect of hydration on conductivity of Ba4LaxCa2 − xNb2O11 + 0.5x (x = 0.5, 1, 1.5, 2) phases
    D. V. Korona
    I. M. Kutikov
    A. Ya. Neiman
    Russian Journal of Electrochemistry, 2013, 49 : 1171 - 1180
  • [38] Thermal and Optical Properties of High Refractive Index xNb2O5-(1-x)La2O3 Glasses Prepared by Aerodynamic Levitation Method
    Cheng, Yuxing
    Xu, Guisheng
    Yu, Jianding
    Pen, Xiuhong
    Zhang, Minghui
    Liu, Yan
    MATERIALS PERFORMANCE, MODELING AND SIMULATION, 2013, 749 : 255 - 259
  • [39] PHASE-STABILITY AND PHYSICAL-PROPERTIES OF CUBIC AND TETRAGONAL ZRO2 IN THE SYSTEM ZRO2-Y2O3-TA2O5
    KIM, DJ
    TIEN, TY
    JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 1991, 74 (12) : 3061 - 3065
  • [40] Influence of the yttria dopant on the structure and properties of (ZrO2)0.91–x(Sc2O3)0.09(Y2O3)х (x = 0–0.02) crystals
    Agarkov D.A.
    Borik M.A.
    Bredikhin S.I.
    Bublik V.T.
    Iskhakova L.D.
    Kulebyakin A.V.
    Kuritsyna I.E.
    Lomonova E.E.
    Milovich F.O.
    Myzina V.A.
    Seryakov S.V.
    Tabachkova N.Y.
    Russian Microelectronics, 2016, 45 (8-9) : 625 - 632