Blow-up of solution of an initial boundary value problem for a damped nonlinear hyperbolic equation

被引:14
|
作者
Chen, GW [1 ]
Wang, YP [1 ]
Zhao, ZC [1 ]
机构
[1] Zhengzhou Univ, Dept Math, Zhengzhou 450052, Peoples R China
基金
中国国家自然科学基金;
关键词
nonlinear damped hyperbolic equation; existence of local solution; blow-up of solution;
D O I
10.1016/S0893-9659(04)90116-4
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper gives the sufficient conditions of blow-up of the solution of a nonlinear damped hyperbolic equation with the initial boundary value conditions in finite time and proves the existence and uniqueness of the local generalized solution of this problem. (C) 2004 Elsevier Ltd. All rights reserved.
引用
收藏
页码:491 / 497
页数:7
相关论文
共 50 条
  • [31] Blow-Up Solutions for a Singular Nonlinear Hadamard Fractional Boundary Value Problem
    Bachar, Imed
    Mesloub, Said
    JOURNAL OF FUNCTION SPACES, 2020, 2020
  • [32] BLOW-UP OR NOT BLOW-UP AT THE HYPERBOLIC BOUNDARY FOR A SYSTEM FROM CHEMISTRY?
    Bourdarias, Christian
    Gisclon, Marguerite
    Junca, Stephane
    HYPERBOLIC PROBLEMS: THEORY, NUMERICS, APPLICATIONS, 2014, 8 : 615 - 622
  • [33] Numerical blow-up for a nonlinear problem with a nonlinear boundary condition
    Ferreira, R
    Groisman, P
    Rossi, JD
    MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2002, 12 (04): : 461 - 483
  • [34] Blow-Up of the Hyperbolic Burgers Equation
    Carlos Escudero
    Journal of Statistical Physics, 2007, 127 : 327 - 338
  • [35] Blow-up of the hyperbolic burgers equation
    Escudero, Carlos
    JOURNAL OF STATISTICAL PHYSICS, 2007, 127 (02) : 327 - 338
  • [36] ON GLOBAL EXISTENCE AND BLOW-UP FOR DAMPED STOCHASTIC NONLINEAR SCHRODINGER EQUATION
    Cui, Jianbo
    Hong, Jialin
    Sun, Liying
    DISCRETE AND CONTINUOUS DYNAMICAL SYSTEMS-SERIES B, 2019, 24 (12): : 6837 - 6854
  • [37] Existence and blow-up of a new class of nonlinear damped wave equation
    Tebba, Zakia
    Boulaaras, Salah
    Degaichia, Hakima
    Allahem, Ali
    JOURNAL OF INTELLIGENT & FUZZY SYSTEMS, 2020, 38 (03) : 2649 - 2660
  • [38] Global solution and blow-up solution for a nonlinear damped beam with source term
    Jie-qiong Wu
    Sheng-jia Li
    Applied Mathematics-A Journal of Chinese Universities, 2010, 25 : 447 - 453
  • [39] Global solution and blow-up solution for a nonlinear damped beam with source term
    Wu Jie-qiong
    Li Sheng-jia
    APPLIED MATHEMATICS-A JOURNAL OF CHINESE UNIVERSITIES SERIES B, 2010, 25 (04) : 447 - 453
  • [40] Global solution and blow-up solution for a nonlinear damped beam with source term
    WU Jie-qiong LI Sheng-jia School of Mathematical Sciences
    Applied Mathematics:A Journal of Chinese Universities, 2010, (04) : 447 - 453