Structural, electronic and magnetic properties of neutral and anionic Fe2(BO2)n (n=1-3) clusters

被引:2
|
作者
Zhao, Hong Min [1 ]
Lin, Xia [1 ]
Li, Yawei [2 ,3 ]
Wang, Qian [3 ,4 ]
Jena, Puru [4 ]
机构
[1] Beijing jiaotong Univ, Sch Sci, Dept Phys, Beijing 100044, Peoples R China
[2] Peking Univ, Coll Engn, Dept Mat Sci & Engn, Beijing 100871, Peoples R China
[3] Peking Univ, Coll Engn, Ctr Appl Phys & Technol, Beijing 100871, Peoples R China
[4] Virginia Commonwealth Univ, Dept Phys, Richmond, VA 23284 USA
基金
中国国家自然科学基金;
关键词
PHOTOELECTRON-SPECTROSCOPY; FE-N; IRON; ATOMS; BO2;
D O I
10.1016/j.physleta.2014.08.014
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
Using Fe-2 dimer as a prototype of transition-metal cluster calculations based on density functional theory have been carried out to study the effect of ligand and charge states on the geometry, bonding feature and magnetic coupling of neutral and anionic Fe-2(BO2)(n) (n = 1-3) clusters. For neutral Fe-2(BO2)(n) clusters the spin multiplicity of the complex changes from 7 to 8 when n goes from 0 to 1, 2, and 3. With increasing number of ligands the Fe-Fe distance increases, the magnetic coupling between Fe-Fe changes from direct exchange to super exchange, and 3d-2p hybridization between Fe and O atoms becomes predominant. For anionic Fe-2(BO2)(n) (n = 1-3) clusters, the corresponding total magnetic moment is 0, 7 and 6 mu(B), respectively. Compared with neutral clusters the HOMO-LUMO gaps of anionic species increase rapidly as more BO2 units are introduced. This study sheds light on the potential of superhalogens to tune electronic and magnetic properties of Fe clusters. (C) 2014 Published by Elsevier B.V.
引用
收藏
页码:2959 / 2964
页数:6
相关论文
共 50 条
  • [21] Electronic and Magnetic Properties of Manganese and Iron Atoms Decorated With BO2 Superhalogens
    Koirala, Pratik
    Pradhan, Kalpataru
    Kandalam, Anil K.
    Jena, P.
    JOURNAL OF PHYSICAL CHEMISTRY A, 2013, 117 (06): : 1310 - 1318
  • [22] Structures and magnetic and electronic properties of the O2-adsorbed Fe2N clusters
    Zhao, Zhen
    Li, Zhi
    STRUCTURAL CHEMISTRY, 2021, 32 (01) : 127 - 133
  • [23] Geometries and electronic properties of Tan, TanO and TaOn (n=1-3) clusters
    Wu, Z. J.
    Kawazoe, Y.
    Meng, J.
    JOURNAL OF MOLECULAR STRUCTURE-THEOCHEM, 2006, 764 (1-3): : 123 - 132
  • [24] Structures and magnetic and electronic properties of the O2-adsorbed Fe2N clusters
    Zhen Zhao
    Zhi Li
    Structural Chemistry, 2021, 32 : 127 - 133
  • [25] Structural, Electronic and Magnetic Properties of TinO2 and TinO2- (n=1-10) Clusters
    Nie Jing
    Lu Zhang-Hui
    Yao Jun
    Gui Tian
    Chen Xiang-Shu
    ACTA PHYSICO-CHIMICA SINICA, 2013, 29 (07) : 1433 - U326
  • [26] Electronic Structures and Energies of Fe2(CO)n (n=09)
    Li, Qiang
    Li, Yan-Ni
    Wang, Tao
    Wang, Sheng-Guang
    Huo, Chun-Fang
    Li, Yong-Wang
    Wang, Jianguo
    Jiao, Haijun
    CHEMPHYSCHEM, 2013, 14 (08) : 1573 - 1576
  • [27] Probing the Structural and Electronic Properties of the Anionic and Neutral Tellurium-Doped Boron Clusters TeB n q (n=3-16, q=0,-1)
    Zhang, Yong-Hang
    Wang, Huai-Qian
    Li, Hui-Fang
    Zeng, Jin-Kun
    Zheng, Hao
    Mei, Xun-Jie
    Zhang, Jia-Ming
    Jiang, Kai-Le
    Zhang, Bo
    Wu, Wen-Hai
    JOURNAL OF PHYSICAL CHEMISTRY A, 2024, 128 (28): : 5459 - 5472
  • [28] A theoretical study of structural, vibrational, and electronic properties of neutral, positive, and negative indium arsenide clusters, InnAsn (n=1, 2, 3)
    Costales, A
    Pandey, R
    CHEMICAL PHYSICS LETTERS, 2002, 362 (3-4) : 210 - 216
  • [29] Structures and photoelectron spectroscopy of Cun(BO2)m - (n, m=1, 2) clusters: Observation of hyperhalogen behavior
    Feng, Yuan
    Xu, Hong-Guang
    Zheng, Weijun
    Zhao, Hongmin
    Kandalam, Anil K.
    Jena, Puru
    JOURNAL OF CHEMICAL PHYSICS, 2011, 134 (09):
  • [30] Dynamical fluxionality, multiplicity of geometrical forms, and electronic properties of anionic, neutral, and cationic TanSi12 (n=1-3) clusters: quantum chemical calculations
    Lu, Sheng-Jie
    MOLECULAR PHYSICS, 2020, 118 (12)