AN EXTENSION OF SOME PROPERTIES FOR THE FOURIER TRANSFORM OPERATOR ON LP(R) SPACES

被引:0
|
作者
Guadalupe Morales, M. [1 ]
Arredondo, Juan H. [1 ]
Mendoza, Francisco J. [2 ]
机构
[1] Univ Autonoma Metropolitana Iztapalapa, Dept Matemat, Ave San Rafael Atlixco 186, Mexico City 09340, DF, Mexico
[2] Benemerita Univ Puebla, Fac Ciencias Fis Matemat, Ave San Claudio & 18 Sur S-N, Puebla 72570, Puebla, Mexico
来源
关键词
Fourier transform; L-p(R) space; Henstock-Kurzweil integral;
D O I
暂无
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper the Fourier transform is studied using the Henstock-Kurzweil integral on R. We obtain that the classical Fourier transform F-p : L-P (R) -> L-q (R), 1/p + 1/q = 1 and 1 < p <= 2, is represented by the integral on a subspace of L-P (R), which strictly contains L-1 (R) boolean AND L-P (R). Moreover, for any function f in that subspace, F-p (f) obeys a generalized Riemann Lebesgue lemma.
引用
收藏
页码:85 / 94
页数:10
相关论文
共 50 条