PREDICTION OF DRAPE COEFFICIENT BY ARTIFICIAL NEURAL NETWORK

被引:8
|
作者
Ghith, Adel [1 ,2 ]
Hamdi, Thouraya [1 ,3 ]
Fayala, Faten [1 ,3 ]
机构
[1] Univ Monastir, Natl Engn Sch, Text Dept, Monastir 5019, Tunisia
[2] Univ Monastir, ATSI Res Unit Automat Signal & Image Anal, Monastir 5019, Tunisia
[3] Univ Monastir, Lab Energet & Therm Syst, LESTE, Monastir 5019, Tunisia
关键词
Bending rigidity; drape coefficient; neural networks; back-propagation; MECHANICAL-PROPERTIES; FABRIC-DRAPE;
D O I
10.1515/aut-2015-0045
中图分类号
TB3 [工程材料学]; TS1 [纺织工业、染整工业];
学科分类号
0805 ; 080502 ; 0821 ;
摘要
An artificial neural network (ANN) model was developed to predict the drape coefficient (DC). Hanging weight, Sample diameter and the bending rigidities in warp, weft and skew directions are selected as inputs of the ANN model. The ANN developed is a multilayer perceptron using a back-propagation algorithm with one hidden layer. The drape coefficient is measured by a Cusick drape meter. Bending rigidities in different directions were calculated according to the Cantilever method. The DC obtained results show a good correlation between the experimental and the estimated ANN values. The results prove a significant relationship between the ANN inputs and the drape coefficient. The algorithm developed can easily predict the drape coefficient of fabrics at different diameters.
引用
收藏
页码:266 / 274
页数:9
相关论文
共 50 条
  • [31] Artificial Neural Network as a Tool for Backbreak Prediction
    Monjezi M.
    Hashemi Rizi S.M.
    Majd V.J.
    Khandelwal M.
    Geotechnical and Geological Engineering, 2014, 32 (01) : 21 - 30
  • [32] Denitrification Prediction in Groundwater by Artificial Neural Network
    Zuo, Jinlong
    Sun, Yuqi
    Li, Junsheng
    Tan, Cong
    Xia, Zhi
    BASIC & CLINICAL PHARMACOLOGY & TOXICOLOGY, 2020, 126 : 85 - 85
  • [33] An artificial neural network model for prediction of logD
    Waldman, Marvin
    Fraczkiewicz, Robert
    Woltosz, Walter S.
    ABSTRACTS OF PAPERS OF THE AMERICAN CHEMICAL SOCIETY, 2009, 237
  • [34] Artificial neural network prediction of ascites in broilers
    Roush, WB
    Kirby, YK
    Cravener, TL
    Wideman, RF
    POULTRY SCIENCE, 1996, 75 (12) : 1479 - 1487
  • [35] Artificial neural network model for PMV prediction
    Zhang, J
    Zhang, WJ
    Zong, LH
    ISHVAC 99: 3RD INTERNATIONAL SYMPOSIUM ON HEATING, VENTILATION AND AIR CONDITIONING, VOLS 1 AND 2, 1999, : 214 - 219
  • [36] Artificial Neural Network in FPGA for Temperature Prediction
    Perez, Santiago T.
    Vasquez, Jose L.
    Travieso, Carlos M.
    Alonso, Jesus B.
    ADVANCES IN NONLINEAR SPEECH PROCESSING, 2011, 7015 : 104 - +
  • [37] Artificial Neural Network Application for MELDNa Prediction
    Pruinelli, L.
    Nguyen, M.
    Olson, S.
    Zhou, J.
    Schold, J.
    Pruett, T.
    Ma, S.
    Simon, G.
    AMERICAN JOURNAL OF TRANSPLANTATION, 2021, 21 : 797 - 797
  • [38] Prediction of fabric drape coefficient using simple measurement method
    Kim, Hyohyun
    Kim, Sungmin
    Park, Chang Kyu
    JOURNAL OF ENGINEERED FIBERS AND FABRICS, 2023, 18
  • [39] Artificial neural network approach to predict the lubricated friction coefficient
    Echavarri Otero, J.
    de la Guerra Ochoa, E.
    Chacon Tanarro, E.
    Lafont Morgado, P.
    Diaz Lantada, A.
    Munoz-Guijosa, J. M.
    Munoz Sanz, J. L.
    LUBRICATION SCIENCE, 2014, 26 (03) : 141 - 162
  • [40] Network Traffic Anomaly Prediction Using Artificial Neural Network
    Ciptaningtyas, Hening Titi
    Fatichah, Chastine
    Sabila, Altea
    ENGINEERING INTERNATIONAL CONFERENCE (EIC) 2016, 2017, 1818