Overexpression of the OsChI1 gene, encoding a putative laccase precursor, increases tolerance to drought and salinity stress in transgenic Arabidopsis

被引:52
|
作者
Cho, Hyun Yong [1 ]
Lee, Chanhui [2 ]
Hwang, Sun-Goo [1 ]
Park, Yong Chan [1 ]
Lim, Hye Lee [1 ]
Jang, Cheol Seong [1 ]
机构
[1] Kangwon Natl Univ, Dept Appl Plant Sci, Plant Genom Lab, Chunchon 200713, South Korea
[2] Kyung Hee Univ, Dept Plant & Environm New Resources, Yongin 446701, South Korea
关键词
Chilling inducible gene; Copper protein; Abiotic stress; Subcellular localization; Heterogeneous expression; WGCNA; Coexpression network; LOW-TEMPERATURE STRESS; COEXPRESSION NETWORK; ABIOTIC STRESS; SALT STRESS; RICE; PLANTS; EXPRESSION; THALIANA; FAMILY; MAIZE;
D O I
10.1016/j.gene.2014.09.018
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
In a previous study, we identified a number of genes induced by chilling using a microarray approach. In order to investigate the molecular mechanism underlying chilling tolerance and possible crosstalk with other abiotic stresses, we selected a rice gene, OsChI1 (Os01g61160), for further analysis. The OsChI1 gene encodes a putative laccase precursor protein. In accordance with our previous results, its transcript is highly accumulated during a 12-day period of chilling treatment. Higher expression of the OsChI1 gene was also detected in roots and tissues at the vegetative and productive stages. In addition, we also observed increased transcript levels of the OsChI1 gene during dehydration and high salinity conditions. Transient expression of OsChI1 proteins tagged with fluorescence protein in rice protoplasts revealed that OsChI1 is localized in the plasma membrane. The Arabidopsis transgenic plants overexpressing OsChI1-EGFP resulted in an increased tolerance to drought and salinity stress. In silico analysis of OsChI1 suggests that several genes coexpressed with OsChI1 in the root during various abiotic stresses, such as chilling, drought and salt stress, may play an important role in the ROS signaling pathway. Potential roles of OsChI1 in response to abiotic stresses are discussed. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:98 / 105
页数:8
相关论文
共 50 条
  • [31] Overexpression of Lolium multiflorum LmMYB1 Enhances Drought Tolerance in Transgenic Arabidopsis
    Liu, Qiuxu
    Wang, Fangyan
    Li, Peng
    Yu, Guohui
    Zhang, Xinquan
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2023, 24 (20)
  • [32] Overexpression of a maize MYB48 gene confers drought tolerance in transgenic arabidopsis plants
    Yan Wang
    Qianqian Wang
    MingLi Liu
    Chen Bo
    Xi Wang
    Qing Ma
    Beijiu Cheng
    Ronghao Cai
    Journal of Plant Biology, 2017, 60 : 612 - 621
  • [33] Overexpression of the GmPM35 Gene Significantly Enhances Drought Tolerance in Transgenic Arabidopsis and Soybean
    Wang, Xinyu
    Sun, Yao
    Wang, Rui
    Li, Xinyang
    Li, Yongyi
    Wang, Tianyu
    Guo, Zhaohao
    Li, Yan
    Qiu, Wenxi
    Guan, Shuyan
    Zhang, Qi
    Wang, Piwu
    Li, Mingze
    Liu, Siyan
    Fan, Xuhong
    AGRONOMY-BASEL, 2025, 15 (01):
  • [34] Overexpression of a maize MYB48 gene confers drought tolerance in transgenic arabidopsis plants
    Wang, Yan
    Wang, Qianqian
    Liu, MingLi
    Bo, Chen
    Wang, Xi
    Ma, Qing
    Cheng, Beijiu
    Cai, Ronghao
    JOURNAL OF PLANT BIOLOGY, 2017, 60 (06) : 612 - 621
  • [35] Overexpression of a Rice Monosaccharide Transporter Gene (OsMST6) Confers Enhanced Tolerance to Drought and Salinity Stress in Arabidopsis thaliana
    Monfared, Hossein Hosseini
    Chew, Jin Kiat
    Azizi, Parisa
    Xue, Gang-Ping
    Ee, Su-Fang
    Kadkhodaei, Saeid
    Hedayati, Pouya
    Ismail, Ismanizan
    Zainal, Zamri
    PLANT MOLECULAR BIOLOGY REPORTER, 2020, 38 (01) : 151 - 164
  • [36] Overexpression of a Rice Monosaccharide Transporter Gene (OsMST6) Confers Enhanced Tolerance to Drought and Salinity Stress in Arabidopsis thaliana
    Hossein Hosseini Monfared
    Jin Kiat Chew
    Parisa Azizi
    Gang-Ping Xue
    Su-Fang Ee
    Saeid Kadkhodaei
    Pouya Hedayati
    Ismanizan Ismail
    Zamri Zainal
    Plant Molecular Biology Reporter, 2020, 38 : 151 - 164
  • [37] Overexpression of OsVP1 and OsNHX1 Increases Tolerance to Drought and Salinity in Rice
    Liu, Shiping
    Zheng, Luqing
    Xue, Yanhong
    Zhang, Qian
    Wang, Lu
    Shou, Huixia
    JOURNAL OF PLANT BIOLOGY, 2010, 53 (06) : 444 - 452
  • [38] Overexpression of OsVP1 and OsNHX1 Increases Tolerance to Drought and Salinity in Rice
    Shiping Liu
    Luqing Zheng
    Yanhong Xue
    Qian Zhang
    Lu Wang
    Huixia Shou
    Journal of Plant Biology, 2010, 53 : 444 - 452
  • [39] Overexpression of the Brassica napus BnLAS gene in Arabidopsis affects plant development and increases drought tolerance
    Yang, Minggui
    Yang, Qingyong
    Fu, Tingdong
    Zhou, Yongming
    PLANT CELL REPORTS, 2011, 30 (03) : 373 - 388
  • [40] Overexpression of an R1R2R3 MYB gene, OsMYB3R-2, increases tolerance to freezing, drought, and salt stress in transgenic Arabidopsis
    Dai, Xiaoyan
    Xu, Yunyuan
    Ma, Qibin
    Xu, Wenying
    Wang, Tai
    Xue, Yongbiao
    Chong, Kang
    PLANT PHYSIOLOGY, 2007, 143 (04) : 1739 - 1751