Overexpression of the OsChI1 gene, encoding a putative laccase precursor, increases tolerance to drought and salinity stress in transgenic Arabidopsis

被引:52
|
作者
Cho, Hyun Yong [1 ]
Lee, Chanhui [2 ]
Hwang, Sun-Goo [1 ]
Park, Yong Chan [1 ]
Lim, Hye Lee [1 ]
Jang, Cheol Seong [1 ]
机构
[1] Kangwon Natl Univ, Dept Appl Plant Sci, Plant Genom Lab, Chunchon 200713, South Korea
[2] Kyung Hee Univ, Dept Plant & Environm New Resources, Yongin 446701, South Korea
关键词
Chilling inducible gene; Copper protein; Abiotic stress; Subcellular localization; Heterogeneous expression; WGCNA; Coexpression network; LOW-TEMPERATURE STRESS; COEXPRESSION NETWORK; ABIOTIC STRESS; SALT STRESS; RICE; PLANTS; EXPRESSION; THALIANA; FAMILY; MAIZE;
D O I
10.1016/j.gene.2014.09.018
中图分类号
Q3 [遗传学];
学科分类号
071007 ; 090102 ;
摘要
In a previous study, we identified a number of genes induced by chilling using a microarray approach. In order to investigate the molecular mechanism underlying chilling tolerance and possible crosstalk with other abiotic stresses, we selected a rice gene, OsChI1 (Os01g61160), for further analysis. The OsChI1 gene encodes a putative laccase precursor protein. In accordance with our previous results, its transcript is highly accumulated during a 12-day period of chilling treatment. Higher expression of the OsChI1 gene was also detected in roots and tissues at the vegetative and productive stages. In addition, we also observed increased transcript levels of the OsChI1 gene during dehydration and high salinity conditions. Transient expression of OsChI1 proteins tagged with fluorescence protein in rice protoplasts revealed that OsChI1 is localized in the plasma membrane. The Arabidopsis transgenic plants overexpressing OsChI1-EGFP resulted in an increased tolerance to drought and salinity stress. In silico analysis of OsChI1 suggests that several genes coexpressed with OsChI1 in the root during various abiotic stresses, such as chilling, drought and salt stress, may play an important role in the ROS signaling pathway. Potential roles of OsChI1 in response to abiotic stresses are discussed. (C) 2014 Elsevier B.V. All rights reserved.
引用
收藏
页码:98 / 105
页数:8
相关论文
共 50 条
  • [1] Overexpression of CsSnRK2.5 increases tolerance to drought stress in transgenic Arabidopsis
    Zhang, Yongheng
    Wan, Siqin
    Liu, Xianghong
    He, Jingyuan
    Cheng, Long
    Duan, Mengsha
    Liu, Huan
    Wang, Weidong
    Yu, Youben
    PLANT PHYSIOLOGY AND BIOCHEMISTRY, 2020, 150 : 162 - 170
  • [2] Overexpression of a MYB Family Gene, OsMYB6, Increases Drought and Salinity Stress Tolerance in Transgenic Rice
    Tang, Yuehui
    Bao, Xinxin
    Zhi, Yuling
    Wu, Qian
    Guo, Yaru
    Yin, Xuhui
    Zeng, Liqin
    Li, Jia
    Zhang, Jing
    He, Wenlong
    Liu, Weihao
    Wang, Qingwei
    Jia, Chengkai
    Li, Zhengkang
    Liu, Kun
    FRONTIERS IN PLANT SCIENCE, 2019, 10
  • [3] Overexpression of the ChVDE gene, encoding a violaxanthin de-epoxidase, improves tolerance to drought and salt stress in transgenic Arabidopsis
    Li Na Sun
    Fang Wang
    Jie Wan Wang
    Li Jiao Sun
    Wen Rui Gao
    Xing Shun Song
    3 Biotech, 2019, 9
  • [4] Overexpression of the ChVDE gene, encoding a violaxanthin de-epoxidase, improves tolerance to drought and salt stress in transgenic Arabidopsis
    Sun, Li Na
    Wang, Fang
    Wang, Jie Wan
    Sun, Li Jiao
    Gao, Wen Rui
    Song, Xing Shun
    3 BIOTECH, 2019, 9 (05)
  • [5] Overexpression of TaSIM provides increased drought stress tolerance in transgenic Arabidopsis
    Yu, Yuehua
    Bi, Chenxi
    Wang, Qing
    Ni, Zhiyong
    BIOCHEMICAL AND BIOPHYSICAL RESEARCH COMMUNICATIONS, 2019, 512 (01) : 66 - 71
  • [6] Overexpression of a sugarcane ScCaM gene negatively regulates salinity and drought stress responses in transgenic Arabidopsis thaliana
    Liu, Jinxian
    Feng, Jingfang
    Zhang, Chang
    Ren, Yongjuan
    Su, Weihua
    Wu, Guangheng
    Fu, Xianyu
    Huang, Ning
    Que, Youxiong
    Ling, Hui
    Luo, Jun
    BIOCELL, 2023, 47 (01) : 215 - 225
  • [7] Overexpression of a 'Beta' MYB Factor Gene, VhMYB15, Increases Salinity and Drought Tolerance in Arabidopsis thaliana
    Han, Jiaxin
    Dai, Jing
    Chen, Zhe
    Li, Wenhui
    Li, Xingguo
    Zhang, Lihua
    Yao, Anqi
    Zhang, Bingxiu
    Han, Deguo
    INTERNATIONAL JOURNAL OF MOLECULAR SCIENCES, 2024, 25 (03)
  • [8] Overexpression of cotton GhNAC072 gene enhances drought and salt stress tolerance in transgenic Arabidopsis
    Mehari, Teame Gereziher
    Hou, Yuqing
    Xu, Yanchao
    Umer, Muhammad Jawad
    Shiraku, Margaret Linyerera
    Wang, Yuhong
    Wang, Heng
    Peng, Renhai
    Wei, Yangyang
    Cai, Xiaoyan
    Zhou, Zhongli
    Liu, Fang
    BMC GENOMICS, 2022, 23 (01)
  • [9] Overexpression of Cotton a DTX/MATE Gene Enhances Drought, Salt, and Cold Stress Tolerance in Transgenic Arabidopsis
    Lu, Pu
    Magwanga, Richard Odongo
    Kirungu, Joy Nyangasi
    Hu, Yangguang
    Dong, Qi
    Cai, Xiaoyan
    Zhou, Zhongli
    Wang, Xingxing
    Zhang, Zhenmei
    Hou, Yuqing
    Wang, Kunbo
    Liu, Fang
    FRONTIERS IN PLANT SCIENCE, 2019, 10
  • [10] Overexpression of cotton GhNAC072 gene enhances drought and salt stress tolerance in transgenic Arabidopsis
    Teame Gereziher Mehari
    Yuqing Hou
    Yanchao Xu
    Muhammad Jawad Umer
    Margaret Linyerera Shiraku
    Yuhong Wang
    Heng Wang
    Renhai Peng
    Yangyang Wei
    Xiaoyan Cai
    Zhongli Zhou
    Fang Liu
    BMC Genomics, 23