On the integration of some classes of weakly deformed nonlinear Schrodinger equations

被引:3
|
作者
Zenchuk, AI
机构
[1] L. D. Landau Institute of Theoretical Physics, Russian Academy of Sciences
关键词
03.65.Ge; 11.10.Lm;
D O I
10.1134/1.567490
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
A method is proposed for constructing the solutions of a nonlinear Schrodinger equation with small corrections arising as a result of the introduction of arbitrary functions of the time and coordinates into the operator that dresses the kernel of a local <(partial derivative)over bar> problem. (C) 1997 American Institute of Physics.
引用
收藏
页码:222 / 228
页数:7
相关论文
共 50 条
  • [1] On the integration of some classes of weakly deformed nonlinear Schrödinger equations
    A. I. Zenchuk
    Journal of Experimental and Theoretical Physics Letters, 1997, 66 : 222 - 228
  • [2] On some canonical classes of cubic-quintic nonlinear Schrodinger equations
    Ozemir, C.
    JOURNAL OF MATHEMATICAL ANALYSIS AND APPLICATIONS, 2017, 446 (02) : 1814 - 1832
  • [3] On some classes of generalized Schrodinger equations
    Correa Leao, Amanda S. S.
    Morbach, Joelma
    Santos, Andrelino, V
    Santos Junior, Joao R.
    ADVANCES IN NONLINEAR ANALYSIS, 2021, 10 (01) : 522 - 533
  • [4] MULTIPHASE WEAKLY NONLINEAR GEOMETRIC OPTICS FOR SCHRODINGER EQUATIONS
    Carles, Remi
    Dumas, Eric
    Sparber, Christof
    SIAM JOURNAL ON MATHEMATICAL ANALYSIS, 2010, 42 (01) : 489 - 518
  • [5] On some nonlinear Schrodinger equations in RN
    Wei, Juncheng
    Wu, Yuanze
    PROCEEDINGS OF THE ROYAL SOCIETY OF EDINBURGH SECTION A-MATHEMATICS, 2023, 153 (05) : 1503 - 1528
  • [6] Admissible Transformations and Normalized Classes of Nonlinear Schrodinger Equations
    Popovych, Roman O.
    Kunzinger, Michael
    Eshraghi, Homayoon
    ACTA APPLICANDAE MATHEMATICAE, 2010, 109 (02) : 315 - 359
  • [7] Global existence for a system of weakly coupled nonlinear Schrodinger equations
    Shu, J.
    Zhang, J.
    MATHEMATICAL NOTES, 2009, 86 (5-6) : 650 - 654
  • [8] Remarks on some systems of nonlinear Schrodinger equations
    Ambrosetti, Antonio
    JOURNAL OF FIXED POINT THEORY AND APPLICATIONS, 2008, 4 (01) : 35 - 46
  • [9] Some results on a class of nonlinear Schrodinger equations
    Grossi, M
    MATHEMATISCHE ZEITSCHRIFT, 2000, 235 (04) : 687 - 705
  • [10] On the integration of some classes of (n+1)-dimensional nonlinear equations of mathematical physics
    A. I. Zenchuk
    Journal of Experimental and Theoretical Physics Letters, 2003, 77 : 324 - 327