Functional connectivity modelling in FMRI based on causal networks

被引:0
|
作者
Deleus, FF [1 ]
De Mazière, PA [1 ]
Van Hulle, MM [1 ]
机构
[1] Katholieke Univ Leuven, Lab Neuro Psychofysiol, B-3000 Louvain, Belgium
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We apply the principle of causal networks to develop a new tool for connectivity analysis in functional Magnetic Resonance Imaging (fMRI). The connections between active brain regions are modelled as causal relationships in a causal network. The causal networks are based on the notion of d-separation in a graph-theoretic context or, equivalently, on the notion of conditional independence in a statistical context. Since relationships between brain regions are believed to be non-linear in nature [1], we express the conditional dependencies between the brain regions' activities in terms of conditional mutual information. The density estimates needed for computing the conditional mutual information are obtained with topographic maps, trained with the kernel-based Maximum Entropy Rule (kMER).
引用
收藏
页码:119 / 128
页数:10
相关论文
共 50 条
  • [21] Connectivity-based neurofeedback: Dynamic causal modeling for real-time fMRI
    Koush, Yury
    Rosa, Maria Joao
    Robineau, Fabien
    Heinen, Klaartje
    Rieger, Sebastian W.
    Weiskopf, Nikolaus
    Vuilleumier, Patrik
    Van De Ville, Dimitri
    Scharnowski, Frank
    NEUROIMAGE, 2013, 81 : 422 - 430
  • [22] Combined functional and causal connectivity analyses of language networks in children: A feasibility study
    Wilke, Marko
    Lidzba, Karen
    Kraegeloh-Mann, Ingeborg
    BRAIN AND LANGUAGE, 2009, 108 (01) : 22 - 29
  • [23] Insula-Based Networks in Professional Musicians: evidence for Increased Functional Connectivity during Resting State fMRI
    Zamorano, Anna M.
    Cifre, Ignacio
    Montoya, Pedro
    Riquelme, Inmaculada
    Kleber, Boris
    HUMAN BRAIN MAPPING, 2017, 38 (10) : 4834 - 4849
  • [24] MCAN: Multimodal Causal Adversarial Networks for Dynamic Effective Connectivity Learning From fMRI and EEG Data
    Liu, Jinduo
    Han, Lu
    Ji, Junzhong
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2024, 43 (08) : 2913 - 2923
  • [25] Changes in effective connectivity in the sensorimotor network after a single dose of Escitalopram evaluated by Dynamic Causal Modelling for fMRI
    Krammer, W.
    Wiest, R.
    Kagi, G.
    Missimer, J.
    Weder, B.
    Weisstanner, C.
    EUROPEAN JOURNAL OF NEUROLOGY, 2017, 24 : 592 - 592
  • [26] Interplay between functional connectivity and scale-free dynamics in intrinsic fMRI networks
    Ciuciu, Philippe
    Abry, Patrice
    He, Biyu J.
    NEUROIMAGE, 2014, 95 : 248 - 263
  • [27] Test-Retest Reliability of Functional Connectivity Networks During Naturalistic fMRI Paradigms
    Wang, Jiahui
    Ren, Yudan
    Hu, Xintao
    Vinh Thai Nguyen
    Guo, Lei
    Han, Junwei
    Guo, Christine Cong
    HUMAN BRAIN MAPPING, 2017, 38 (04) : 2226 - 2241
  • [28] Functional Connectivity Analysis of Resting-State fMRI Networks in Nicotine Dependent Patients
    Smith, Aria
    Ehtemami, Anahid
    Fratte, Daniel
    Meyer-Baese, Anke
    Zavala-Romero, Olmo
    Goudriaan, Anna E.
    Schmaal, Lianne
    Schulte, Mieke H. J.
    MEDICAL IMAGING 2016-BIOMEDICAL APPLICATIONS IN MOLECULAR, STRUCTURAL, AND FUNCTIONAL IMAGING, 2016, 9788
  • [29] EVALUATING EPILEPTIC NETWORKS IN SURGICAL PLANNING BY SIMULTANEOUS EEG-FMRI AND FUNCTIONAL CONNECTIVITY
    Rajeevan, Nallakkandi
    Negishi, Michiro
    Novotny, E. J.
    Blumenfeld, Hal
    Spencer, Dennis
    Spencer, S. S.
    Constable, Todd
    EPILEPSIA, 2008, 49 : 304 - 305
  • [30] Constructing fMRI connectivity networks: A whole brain functional parcellation method for node definition
    Maggioni, Eleonora
    Tana, Maria Gabriella
    Arrigoni, Filippo
    Zucca, Claudio
    Bianchi, Anna Maria
    JOURNAL OF NEUROSCIENCE METHODS, 2014, 228 : 86 - 99