Functional connectivity modelling in FMRI based on causal networks

被引:0
|
作者
Deleus, FF [1 ]
De Mazière, PA [1 ]
Van Hulle, MM [1 ]
机构
[1] Katholieke Univ Leuven, Lab Neuro Psychofysiol, B-3000 Louvain, Belgium
关键词
D O I
暂无
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
We apply the principle of causal networks to develop a new tool for connectivity analysis in functional Magnetic Resonance Imaging (fMRI). The connections between active brain regions are modelled as causal relationships in a causal network. The causal networks are based on the notion of d-separation in a graph-theoretic context or, equivalently, on the notion of conditional independence in a statistical context. Since relationships between brain regions are believed to be non-linear in nature [1], we express the conditional dependencies between the brain regions' activities in terms of conditional mutual information. The density estimates needed for computing the conditional mutual information are obtained with topographic maps, trained with the kernel-based Maximum Entropy Rule (kMER).
引用
收藏
页码:119 / 128
页数:10
相关论文
共 50 条
  • [1] Functional Connectivity fMRI of the Rodent Brain: Comparison of Functional Connectivity Networks in Rat and Mouse
    Jonckers, Elisabeth
    Van Audekerke, Johan
    De Visscher, Geofrey
    Van der Linden, Annemie
    Verhoye, Marleen
    PLOS ONE, 2011, 6 (04):
  • [2] Biomarker Detection from fMRI-based Complete Functional Connectivity Networks
    Hamdi, Shah Muhammad
    Aydin, Berkay
    Boubrahimi, Soukaina Filali
    Angryk, Rafal
    Krishnamurthy, Lisa Crystal
    Morris, Robin
    2018 IEEE FIRST INTERNATIONAL CONFERENCE ON ARTIFICIAL INTELLIGENCE AND KNOWLEDGE ENGINEERING (AIKE), 2018, : 17 - 24
  • [3] Causal Modelling and Brain Connectivity in Functional Magnetic Resonance Imaging
    Friston, Karl J.
    PLOS BIOLOGY, 2009, 7 (02): : 220 - 225
  • [4] Identification of Discriminative Subnetwork from fMRI-Based Complete Functional Connectivity Networks
    Hamdi, Shah Muhammad
    Wu, Yubao
    Angryk, Rafal
    Krishnamurthy, Lisa Crystal
    Morris, Robin
    INTERNATIONAL JOURNAL OF SEMANTIC COMPUTING, 2019, 13 (01) : 25 - 44
  • [5] Deriving causal relationships in resting-state functional connectivity using SSFO-based optogenetic fMRI
    Han, Xu
    Cramer, Samuel R.
    Zhang, Nanyin
    JOURNAL OF NEURAL ENGINEERING, 2022, 19 (06)
  • [6] fMRI alignment based on local functional connectivity patterns
    Jiang, Di
    Du, Yuhui
    Cheng, Hewei
    Jiang, Tianzi
    Fan, Yong
    MEDICAL IMAGING 2012: IMAGE PROCESSING, 2012, 8314
  • [7] Variational Bayesian causal connectivity analysis for fMRI
    Luessi, Martin
    Babacan, S. Derin
    Molina, Rafael
    Booth, James R.
    Katsaggelos, Aggelos K.
    FRONTIERS IN NEUROINFORMATICS, 2014, 8
  • [8] Detecting Changes in Correlation Networks with Application to Functional Connectivity of fMRI Data
    Baek, Changryong
    Leinwand, Benjamin
    Lindquist, Kristen A. A.
    Jeong, Seok-Oh
    Hopfinger, Joseph
    Gates, Katheleen M. M.
    Pipiras, Vladas
    PSYCHOMETRIKA, 2023, 88 (02) : 636 - 655
  • [9] Detecting Changes in Correlation Networks with Application to Functional Connectivity of fMRI Data
    Changryong Baek
    Benjamin Leinwand
    Kristen A. Lindquist
    Seok-Oh Jeong
    Joseph Hopfinger
    Katheleen M. Gates
    Vladas Pipiras
    Psychometrika, 2023, 88 : 636 - 655
  • [10] Bonding networks: fMRI reveals functional connectivity in prairie vole brains
    Ellen P. Neff
    Lab Animal, 2021, 50 : 64 - 64