Nonparametric Identification of Affine Nonlinear Systems

被引:0
|
作者
Chen, Xing-Min [1 ]
Gao, Chao [2 ]
Wang, Lei [1 ]
机构
[1] Dalian Univ Technol, Sch Math Sci, Dalian 116024, Peoples R China
[2] Beijing Inst Informat & Control, Beijing 100037, Peoples R China
基金
中国国家自然科学基金;
关键词
Affine nonlinear system; Nonparametric kernel regression estimation; Recursive identification; Markov chain; Strong consistency; ADAPTIVE-CONTROL; HAMMERSTEIN;
D O I
暂无
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Recursive nonparametric identification of affine nonlinear systems is considered in this paper. First, by using Markov chain approach, the geometric ergodicity is established for the affine nonlinear system under suitable conditions with the help of the concept of Q-geometric ergodicity. Then recursive local constant kernel regression estimator is proposed for estimating the values of the nonlinear functions at fixed points. It is proved that the estimate converges to the true value with probability one. Finally a simulation example is provided to justify the theoretical analysis.
引用
收藏
页码:2007 / 2011
页数:5
相关论文
共 50 条
  • [41] On the optimal control of affine nonlinear systems
    Popescu, M
    Dumitrache, A
    MATHEMATICAL PROBLEMS IN ENGINEERING, 2005, (04) : 465 - 475
  • [42] On stabilization of nonlinear systems affine in control
    Liu, Xinmin
    Lin, Zongli
    2008 AMERICAN CONTROL CONFERENCE, VOLS 1-12, 2008, : 4123 - 4128
  • [43] Control of oscillations in affine nonlinear systems
    Shiriaev, AS
    SYSTEM STRUCTURE AND CONTROL 1998 (SSC'98), VOLS 1 AND 2, 1998, : 757 - 762
  • [44] Variable selection and identification of high-dimensional nonparametric nonlinear systems by directional regression
    Sun, B.
    Cai, Q. Y.
    Peng, Z. K.
    Cheng, C. M.
    Wang, F.
    Zhang, H. Z.
    NONLINEAR DYNAMICS, 2023, 111 (13) : 12101 - 12112
  • [45] Variable selection and identification of high-dimensional nonparametric nonlinear systems by directional regression
    B. Sun
    Q. Y. Cai
    Z. K. Peng
    C. M. Cheng
    F. Wang
    H. Z. Zhang
    Nonlinear Dynamics, 2023, 111 : 12101 - 12112
  • [46] Parametric and nonparametric identification of linear systems in the presence of nonlinear distortions - A frequency domain approach
    Schoukens, J
    Dobrowiecki, T
    Pintelon, R
    IEEE TRANSACTIONS ON AUTOMATIC CONTROL, 1998, 43 (02) : 176 - 190
  • [47] Nonparametric identification of nonlinear ARX - processes.
    Koshkin, Gennady M.
    Glukhova, Irina Yu
    VESTNIK TOMSKOGO GOSUDARSTVENNOGO UNIVERSITETA-UPRAVLENIE VYCHISLITELNAJA TEHNIKA I INFORMATIKA-TOMSK STATE UNIVERSITY JOURNAL OF CONTROL AND COMPUTER SCIENCE, 2012, 20 (03): : 55 - 61
  • [48] A general convergence result for kernel-based nonparametric identification of nonlinear stochastic systems
    Zhao, Wenxiao
    Weyer, Erik
    IFAC PAPERSONLINE, 2018, 51 (15): : 634 - 639
  • [49] Incremental Affine Abstraction of Nonlinear Systems
    Hassaan, Syed M.
    Khajenejad, Mohammad
    Jensen, Spencer
    Shen, Qiang
    Yong, Sze Zheng
    IEEE CONTROL SYSTEMS LETTERS, 2021, 5 (02): : 653 - 658
  • [50] CVA Identification of Nonlinear Systems with LPV State-Space Models of Affine Dependence
    Larimore, Wallace E.
    Cox, Pepijn B.
    Toth, Roland
    2015 AMERICAN CONTROL CONFERENCE (ACC), 2015, : 831 - 837