Real-Time Identification of Hyperspectral Subspaces

被引:19
|
作者
Torti, Emanuele [1 ]
Acquistapace, Marco [2 ]
Danese, Giovanni [1 ]
Leporati, Francesco [1 ]
Plaza, Antonio [3 ]
机构
[1] Univ Pavia, Dipartimento Ingn Ind & Informaz, I-27100 Pavia, Italy
[2] Positech Consulting Srl, I-20123 Milan, Italy
[3] Univ Extremadura, Hyperspectral Comp Lab, Dept Technol Comp & Commun, Caceres 10071, Spain
关键词
Digital signal processors (DSPs); graphics processing units (GPUs); hyperspectral imaging; hyperspectral signal identification with minimum error (HySime); ENDMEMBER EXTRACTION; IMPLEMENTATION;
D O I
10.1109/JSTARS.2014.2304832
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The identification of signal subspace is a crucial operation in hyperspectral imagery, enabling a correct dimensionality reduction that often yields gains in algorithm performance and efficiency. This paper presents new parallel implementations of a widely used hyperspectral subspace identification with minimum error (HySime) algorithm on different types of high-performance computing architectures, including general purpose multicore CPUs, graphics processing units (GPUs), and digital signal processors (DSPs). We first developed an optimized serial version of the HySime algorithm using the C programming language, and then we developed three parallel versions: one for a multi-core Intel CPU using the OpenMP API and the ATLAS algebra library, another one using NVIDIA's compute unified device architecture (CUDA) and its basic linear algebra subroutines library (CuBLAS), and another one using a Texas' multicore DSP. Experimental results, based on the processing of simulated and real hyperspectral images of various sizes, show the effectiveness of our GPU and multicore CPU implementations, which satisfy the real-time constraints given by the data acquisition rate. The DSP implementation offers a good tradeoff between low power consumption and computational performance, but it is still penalized by the absence of double precision floating point accuracy and/or suitable mathematical libraries.
引用
收藏
页码:2680 / 2687
页数:8
相关论文
共 50 条
  • [31] Parallel real-time virtual dimensionality estimation for hyperspectral images
    Emanuele Torti
    Alessandro Fontanella
    Antonio Plaza
    [J]. Journal of Real-Time Image Processing, 2018, 14 : 753 - 761
  • [32] Hyperspectral imaging of cells; Towards real-time pathological assessment
    Demos, SG
    Ramsamooj, R
    [J]. PHOTONIC DEVICES AND ALGORITHMS FOR COMPUTING V, 2003, 5201 : 133 - 137
  • [33] A Lightweight Hyperspectral Image Anomaly Detector for Real-Time Mission
    Ma, Ning
    Yu, Ximing
    Peng, Yu
    Wang, Shaojun
    [J]. REMOTE SENSING, 2019, 11 (13)
  • [34] REAL-TIME CORRECTIONS FOR A LOW-COST HYPERSPECTRAL INSTRUMENT
    Henriksen, M. B.
    Garrett, J. L.
    Prentice, E. F.
    Stahl, A.
    Johansen, T. A.
    Sigernes, F.
    [J]. 2019 10TH WORKSHOP ON HYPERSPECTRAL IMAGING AND SIGNAL PROCESSING - EVOLUTION IN REMOTE SENSING (WHISPERS), 2019,
  • [35] Real-time constrained linear discriminant analysis for hyperspectral imagery
    Du, Q
    Ren, H
    [J]. MULTISPECTRAL AND HYPERSPECTRAL IMAGE ACQUISITION AND PROCESSING, 2001, 4548 : 103 - 108
  • [36] Real-Time Hyperspectral Image Compression Onto Embedded GPUs
    Diaz, Maria
    Guerra, Raul
    Horstrand, Pablo
    Martel, Ernestina
    Lopez, Sebastian
    Lopez, Jose F.
    Sarmiento, Roberto
    [J]. IEEE JOURNAL OF SELECTED TOPICS IN APPLIED EARTH OBSERVATIONS AND REMOTE SENSING, 2019, 12 (08) : 2803 - 2820
  • [37] RX architectures for real-time anomaly detection in hyperspectral images
    A. Rossi
    N. Acito
    M. Diani
    G. Corsini
    [J]. Journal of Real-Time Image Processing, 2014, 9 : 503 - 517
  • [38] Real-time hyperspectral imaging with volume holographic optical elements
    Liu, WH
    Psaltis, D
    Sinha, A
    Barbastathis, G
    [J]. 2001 INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, VOL II, PROCEEDINGS, 2001, : 1049 - 1052
  • [39] RX architectures for real-time anomaly detection in hyperspectral images
    Rossi, A.
    Acito, N.
    Diani, M.
    Corsini, G.
    [J]. JOURNAL OF REAL-TIME IMAGE PROCESSING, 2014, 9 (03) : 503 - 517
  • [40] Real-time data processor for the COMPASS hyperspectral sensor system
    Schaff, WE
    Copeland, A
    Steffen, M
    O'Connor, R
    Simi, C
    Zadnik, J
    Winter, E
    Healey, G
    [J]. IMAGING SPECTROMETRY IX, 2003, 5159 : 1 - 13