Real-Time Identification of Hyperspectral Subspaces

被引:19
|
作者
Torti, Emanuele [1 ]
Acquistapace, Marco [2 ]
Danese, Giovanni [1 ]
Leporati, Francesco [1 ]
Plaza, Antonio [3 ]
机构
[1] Univ Pavia, Dipartimento Ingn Ind & Informaz, I-27100 Pavia, Italy
[2] Positech Consulting Srl, I-20123 Milan, Italy
[3] Univ Extremadura, Hyperspectral Comp Lab, Dept Technol Comp & Commun, Caceres 10071, Spain
关键词
Digital signal processors (DSPs); graphics processing units (GPUs); hyperspectral imaging; hyperspectral signal identification with minimum error (HySime); ENDMEMBER EXTRACTION; IMPLEMENTATION;
D O I
10.1109/JSTARS.2014.2304832
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
The identification of signal subspace is a crucial operation in hyperspectral imagery, enabling a correct dimensionality reduction that often yields gains in algorithm performance and efficiency. This paper presents new parallel implementations of a widely used hyperspectral subspace identification with minimum error (HySime) algorithm on different types of high-performance computing architectures, including general purpose multicore CPUs, graphics processing units (GPUs), and digital signal processors (DSPs). We first developed an optimized serial version of the HySime algorithm using the C programming language, and then we developed three parallel versions: one for a multi-core Intel CPU using the OpenMP API and the ATLAS algebra library, another one using NVIDIA's compute unified device architecture (CUDA) and its basic linear algebra subroutines library (CuBLAS), and another one using a Texas' multicore DSP. Experimental results, based on the processing of simulated and real hyperspectral images of various sizes, show the effectiveness of our GPU and multicore CPU implementations, which satisfy the real-time constraints given by the data acquisition rate. The DSP implementation offers a good tradeoff between low power consumption and computational performance, but it is still penalized by the absence of double precision floating point accuracy and/or suitable mathematical libraries.
引用
收藏
页码:2680 / 2687
页数:8
相关论文
共 50 条
  • [1] Statistical assessment for real-time background class identification in hyperspectral images
    Duran, O.
    Petrou, M.
    [J]. 2006 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, VOLS 1-8, 2006, : 1386 - 1389
  • [2] Finmeccanica hyperspectral airborne system for real-time target detection and identification
    Bencini, Carlo
    Butera, Francesco
    Riccobono, Aldo
    Andolina, Daniele
    Melani, Alberto
    Rossi, Alessandro
    [J]. 2016 IEEE METROLOGY FOR AEROSPACE (METROAEROSPACE), 2016, : 6 - 11
  • [3] Real-time imaging with a hyperspectral fovea
    Fletcher-Holmes, DW
    Harvey, AR
    [J]. JOURNAL OF OPTICS A-PURE AND APPLIED OPTICS, 2005, 7 (06): : S298 - S302
  • [4] Real-time hyperspectral detection and cuing
    Stellman, CM
    Hazel, GG
    Bucholtz, F
    Michalowicz, JV
    Stocker, A
    Schaaf, W
    [J]. OPTICAL ENGINEERING, 2000, 39 (07) : 1928 - 1935
  • [5] Performance and application of real-time hyperspectral imaging
    Dombrowski, M
    Willson, P
    LaBaw, C
    [J]. IMAGING SPECTROMETRY IV, 1998, 3438 : 286 - 297
  • [6] Scalable architectures for real-time hyperspectral unmixing
    Cervero, T.
    Lopez, S.
    Callico, G. M.
    Lopez, J. F.
    Sarmiento, R.
    [J]. MICROELECTRONICS JOURNAL, 2014, 45 (10) : 1292 - 1303
  • [7] Towards real-time hyperspectral imaging in neurosurgery
    Roddan, Alfie
    Yu, Ziyan
    Leiloglou, Maria
    Chalau, Vadzim
    Anichini, Giulio
    Giannarou, Stamatia
    Elson, Daniel
    [J]. CLINICAL BIOPHOTONICS III, 2024, 13009
  • [8] Real-time snapshot hyperspectral imaging endoscope
    Kester, Robert T.
    Bedard, Noah
    Gao, Liang
    Tkaczyk, Tomasz S.
    [J]. JOURNAL OF BIOMEDICAL OPTICS, 2011, 16 (05)
  • [9] Real-time airborne hyperspectral detection systems
    Koligman, M
    Copeland, A
    [J]. ALGORITHMS FOR MULTISPECTRAL, HYPERSPECTRAL, AND ULTRASPECTRAL IMAGERY VI, 2000, 4049 : 230 - 238
  • [10] Real-time Progressive Hyperspectral Remote Sensing
    Wu, Taixia
    Zhang, Lifu
    Peng, Bo
    Zhang, Hongming
    Chen, Zhengfu
    Gao, Min
    [J]. REMOTELY SENSED DATA COMPRESSION, COMMUNICATIONS, AND PROCESSING XII, 2016, 9874