Improved regression in ratio type estimators based on robust M-estimation

被引:3
|
作者
Rather, Khalid Ul Islam [1 ]
Kocyigit, Eda Gizem [2 ]
Onyango, Ronald [3 ]
Kadila, Cem [4 ]
机构
[1] Chatha Jammu, Div Stat & Comp Sci, Jammu, India
[2] Dokuz Eylul Univ, Dept Stat, Buca Izmir, Turkey
[3] Jaram Oginga Odinga Univ Sci & Technol, Dept Appl Stat Financial Math & Actuarial Sci, Bondo, Kenya
[4] Hacettepe Univ, Dept Stat, Ankara, Turkey
来源
PLOS ONE | 2022年 / 17卷 / 12期
关键词
REDESCENDING M-ESTIMATOR; LOCATION;
D O I
10.1371/journal.pone.0278868
中图分类号
O [数理科学和化学]; P [天文学、地球科学]; Q [生物科学]; N [自然科学总论];
学科分类号
07 ; 0710 ; 09 ;
摘要
In this article, a new robust ratio type estimator using the Uk's redescending M-estimator is proposed for the estimation of the finite population mean in the simple random sampling (SRS) when there are outliers in the dataset. The mean square error (MSE) equation of the proposed estimator is obtained using the first order of approximation and it has been compared with the traditional ratio-type estimators in the literature, robust regression estimators, and other existing redescending M-estimators. A real-life data and simulation study are used to justify the efficiency of the proposed estimators. It has been shown that the proposed estimator is more efficient than other estimators in the literature on both simulation and real data studies.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] Some efficient ratio-type exponential estimators using the Robust regression's Huber M-estimation function
    Yadav, Vinay Kumar
    Prasad, Shakti
    [J]. COMMUNICATIONS FOR STATISTICAL APPLICATIONS AND METHODS, 2024, 31 (03) : 291 - 308
  • [2] Robust kernel ridge regression based on M-estimation
    Wibowo A.
    [J]. Computational Mathematics and Modeling, 2009, 20 (4) : 438 - 446
  • [3] ROBUST M-ESTIMATION OF LOCATION AND REGRESSION
    WU, LL
    [J]. SOCIOLOGICAL METHODOLOGY, 1985, : 316 - 388
  • [4] Improved robust ridge M-estimation
    Norouzirad, M.
    Arashi, M.
    Ahmed, S. E.
    [J]. JOURNAL OF STATISTICAL COMPUTATION AND SIMULATION, 2017, 87 (18) : 3469 - 3490
  • [5] A robust regression methodology via M-estimation
    Yang, Tao
    Gallagher, Colin M.
    McMahan, Christopher S.
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2019, 48 (05) : 1092 - 1107
  • [6] Robust Regression Using Data Partitioning and M-Estimation
    Park, Yousung
    Kim, Daeyoung
    Kim, Seongyong
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2012, 41 (08) : 1282 - 1300
  • [7] Exponentially quantile regression-ratio-type estimators for robust mean estimation
    Khalid, Memoona
    Khana, Hina
    Shabbir, Javid
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2024, 53 (19) : 7069 - 7086
  • [8] ROBUST M-ESTIMATION BASED MATRIX COMPLETION
    Muma, Michael
    Zeng, Wen-Jun
    Zoubir, Abdelhak M.
    [J]. 2019 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING (ICASSP), 2019, : 5476 - 5480
  • [9] Robust penalized M-estimation for function-on-function linear regression
    Cai, Xiong
    Xue, Liugen
    Cao, Jiguo
    [J]. STAT, 2021, 10 (01):
  • [10] ADAPTIVE M-ESTIMATION IN NONPARAMETRIC REGRESSION
    HALL, P
    JONES, MC
    [J]. ANNALS OF STATISTICS, 1990, 18 (04): : 1712 - 1728