Robust Regression Using Data Partitioning and M-Estimation

被引:8
|
作者
Park, Yousung [1 ]
Kim, Daeyoung [2 ]
Kim, Seongyong [3 ]
机构
[1] Korea Univ, Dept Stat, Seoul, South Korea
[2] Univ Massachusetts, Dept Math & Stat, Amherst, MA 01003 USA
[3] Korea Univ, Econ & Stat Inst, Chungnam, South Korea
关键词
Breakdown point; Data partition; Leverage points; Outlier; OUTLIERS;
D O I
10.1080/03610918.2011.598994
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We propose a new robust regression estimator using data partition technique and M estimation (DPM). The data partition technique is designed to define a small fixed number of subsets of the partitioned data set and to produce corresponding ordinary least square (OLS) fits in each subset, contrary to the resampling technique of existing robust estimators such as the least trimmed squares estimator. The proposed estimator shares a common strategy with the median ball algorithm estimator that is obtained from the OLS trial fits only on a fixed number of subsets of the data. We examine performance of the DPM estimator in the eleven challenging data sets and simulation studies. We also compare the DPM with the five commonly used robust estimators using empirical convergence rates relative to the OLS for clean data, robustness through mean squared error and bias, masking and swamping probabilities, the ability of detecting the known outliers, and the regression and affine equivariances.
引用
收藏
页码:1282 / 1300
页数:19
相关论文
共 50 条
  • [1] ROBUST M-ESTIMATION OF LOCATION AND REGRESSION
    WU, LL
    [J]. SOCIOLOGICAL METHODOLOGY, 1985, : 316 - 388
  • [2] A robust regression methodology via M-estimation
    Yang, Tao
    Gallagher, Colin M.
    McMahan, Christopher S.
    [J]. COMMUNICATIONS IN STATISTICS-THEORY AND METHODS, 2019, 48 (05) : 1092 - 1107
  • [3] M-estimation in nonlinear regression for longitudinal data
    Orsakova, Martina
    [J]. KYBERNETIKA, 2007, 43 (01) : 61 - 74
  • [4] Robust kernel ridge regression based on M-estimation
    Wibowo A.
    [J]. Computational Mathematics and Modeling, 2009, 20 (4) : 438 - 446
  • [5] M-estimation in regression models for censored data
    Jin, Zhezhen
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2007, 137 (12) : 3894 - 3903
  • [6] Robust regression estimation based on data partitioning
    Lee, Dong-Hee
    Park, Yousung
    [J]. JOURNAL OF THE KOREAN STATISTICAL SOCIETY, 2007, 36 (02) : 299 - 320
  • [7] Robustizing robust M-estimation using deterministic annealing
    Li, SZ
    [J]. PATTERN RECOGNITION, 1996, 29 (01) : 159 - 166
  • [8] Improved regression in ratio type estimators based on robust M-estimation
    Rather, Khalid Ul Islam
    Kocyigit, Eda Gizem
    Onyango, Ronald
    Kadila, Cem
    [J]. PLOS ONE, 2022, 17 (12):
  • [9] Robust penalized M-estimation for function-on-function linear regression
    Cai, Xiong
    Xue, Liugen
    Cao, Jiguo
    [J]. STAT, 2021, 10 (01):
  • [10] ADAPTIVE M-ESTIMATION IN NONPARAMETRIC REGRESSION
    HALL, P
    JONES, MC
    [J]. ANNALS OF STATISTICS, 1990, 18 (04): : 1712 - 1728