Landslide tsunami: physical modeling for the implementation of tsunami early warning systems in the Mediterranean Sea

被引:14
|
作者
De Girolamo, P. [2 ]
Di Risio, M. [1 ]
Romano, A. [3 ]
Molfetta, M. G. [4 ,5 ]
机构
[1] Univ Aquila, DICEAA, Dept Construct Architectural & Environm Engn, Environm & Maritime Hydraul Lab, Ple Pontieri 1, I-67040 Laquila, Italy
[2] Univ Roma La Sapienza, DICEA, Dept Civil Construct & Environm Engineeering, I-00184 Rome, Italy
[3] Univ Rome Tre, Dept Engn, I-00146 Rome, Italy
[4] Tech Univ Bari, DICATECh, Dept Civil Environm, Bldg Engn & Chem, Bari, Italy
[5] Area Univ Valenzano, Coastal Engn Lab, LIC, I-70010 Bari, Italy
关键词
Landslide Tsunami; tsunami early warning systems; physical modeling; EDGE WAVES; LEVEL MEASUREMENTS; PLANE BEACH; RUN-UP; GENERATION; ALGORITHM; ISLANDS; PERFORMANCE; EVOLUTION; EQUATION;
D O I
10.1016/j.proeng.2014.02.048
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The main difficulty in implementing a Tsunami Early Warning System (TEWS) in the Mediterranean Sea arises from the proximity of the tsunami sources to the coasts at risk. Between few minutes and few tens of minutes are available for a timely warning of a possible approaching tsunami. To date, the only TEWS already operating in the Mediterranean Sea is that run by the Italian Department for Civil Protection at the Island of Stromboli, located north of Sicily in the south of the Tyrrhenian Sea. An active volcano is located on the island. The landslides that often detach from the "Sciara del Fuoco" following eruptive activity may result in the generation of tsunamis that propagate around the island and toward the coasts of Italy. The implemented TEWS is therefore aimed at mitigating the risk of landslide generated tsunamis. The present paper illustrates some of the experimental activities carried out during the last decade aimed at improving the TEWS of Stromboli island. A series of experiments was carried out with the main aim of gaining insight on landslide generated tsunamis. In general, the experimental results were intended to be useful for the definition of forecasting formulae, for the validation of mathematical models, for the improvement of the knowledge on involved phenomena and for the optimization of detection algorithm. In particular, the physical investigations aimed at improving the TEWS of the Stromboli are detailed. (C) 2013 The Authors. Published by Elsevier Ltd.
引用
收藏
页码:429 / 438
页数:10
相关论文
共 50 条
  • [21] A Possible Submarine Landslide and Associated Tsunami at the Northwest Nile Delta, Mediterranean Sea
    Yalciner, Ahmet C.
    Zaytsev, Andrey
    Aytore, Betul
    Insel, Isil
    Heidarzadeh, Mohammad
    Kian, Rozita
    Imamura, Fumihiko
    [J]. OCEANOGRAPHY, 2014, 27 (02) : 68 - 75
  • [22] The Large Greenland Landslide of 2017: Was a Tsunami Warning Possible?
    Chao, Wei-An
    Wu, Tso-Ren
    Ma, Kuo-Fong
    Kuo, Yu-Ting
    Wu, Yih-Min
    Zhao, Li
    Chung, Meng-Ju
    Wu, Han
    Tsai, Yu-Lin
    [J]. SEISMOLOGICAL RESEARCH LETTERS, 2018, 89 (04) : 1335 - 1344
  • [23] Mathematical modeling in application to regional tsunami warning systems operations
    Shokin, Yu. I.
    Babailov, V. V.
    Beisel, S. A.
    Chubarov, L. B.
    Eletsky, S. V.
    Fedotova, Z. I.
    Gusiakov, V. K.
    [J]. COMPUTATIONAL SCIENCE AND HIGH PERFORMANCE COMPUTING III, 2008, 101 : 52 - +
  • [24] Feasibility of Tsunami Early Warning Systems for small volcanic islands
    Bellotti, G.
    Di Risio, M.
    De Girolamo, P.
    [J]. NATURAL HAZARDS AND EARTH SYSTEM SCIENCES, 2009, 9 (06) : 1911 - 1919
  • [25] Can BDS Improve Tsunami Early Warning in South China Sea?
    Chen, Kejie
    Zamora, Natalia
    Babeyko, Andrey
    Ge, Maorong
    [J]. CHINA SATELLITE NAVIGATION CONFERENCE (CSNC) 2015 PROCEEDINGS, VOLII, 2015, 341 : 593 - 603
  • [26] Bayesian networks for tsunami early warning
    Blaser, L.
    Ohrnberger, M.
    Riggelsen, C.
    Babeyko, A.
    Scherbaum, F.
    [J]. GEOPHYSICAL JOURNAL INTERNATIONAL, 2011, 185 (03) : 1431 - 1443
  • [27] Tsunami early warning and decision support
    Steinmetz, T.
    Raape, U.
    Tessmann, S.
    Strobl, C.
    Friedemann, M.
    Kukofka, T.
    Riedlinger, T.
    Mikusch, E.
    Dech, S.
    [J]. NATURAL HAZARDS AND EARTH SYSTEM SCIENCES, 2010, 10 (09) : 1839 - 1850
  • [28] Probabilistic tsunami forecasting for early warning
    Selva, J.
    Lorito, S.
    Volpe, M.
    Romano, F.
    Tonini, R.
    Perfetti, P.
    Bernardi, F.
    Taroni, M.
    Scala, A.
    Babeyko, A.
    Lovholt, F.
    Gibbons, S. J.
    Macias, J.
    Castro, M. J.
    Gonzalez-Vida, J. M.
    Sanchez-Linares, C.
    Bayraktar, H. B.
    Basili, R.
    Maesano, F. E.
    Tiberti, M. M.
    Mele, F.
    Piatanesi, A.
    Amato, A.
    [J]. NATURE COMMUNICATIONS, 2021, 12 (01)
  • [29] Probabilistic tsunami forecasting for early warning
    J. Selva
    S. Lorito
    M. Volpe
    F. Romano
    R. Tonini
    P. Perfetti
    F. Bernardi
    M. Taroni
    A. Scala
    A. Babeyko
    F. Løvholt
    S. J. Gibbons
    J. Macías
    M. J. Castro
    J. M. González-Vida
    C. Sánchez-Linares
    H. B. Bayraktar
    R. Basili
    F. E. Maesano
    M. M. Tiberti
    F. Mele
    A. Piatanesi
    A. Amato
    [J]. Nature Communications, 12
  • [30] Bayesian networks for tsunami early warning
    Blaser, L.
    Ohrnberger, M.
    Riggelsen, C.
    Babeyko, A.
    Scherbaum, F.
    [J]. Geophysical Journal International, 2011, 185 (03): : 1431 - 1443