Conv-LSTM: Pedestrian Trajectory Prediction in Crowded Scenarios

被引:1
|
作者
Chen, Kai [1 ]
Song, Xiao [1 ]
Yu, Hang [2 ]
机构
[1] Beihang Univ, Sch Automat Sci & Elect Engn, Beijing, Peoples R China
[2] Beijing Inst Elect Syst Engn, State Key Lab Intelligent Mfg Syst Technol, Beijing 100854, Peoples R China
关键词
Convolutional neural network; Trajectory prediction; Pedestrian behavior; DYNAMICS;
D O I
10.1007/978-981-15-1078-6_3
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Pedestrian trajectory prediction is a challenging problem in the crowded and chaotic scenarios. Currently, the prediction error is still high because the input of Long Short-Term Memory (LSTM) network is a 1D vector, which cannot represent the spatial information of pedestrians. To tackle this, we propose to use tensors to represent the complex environmental information. Meanwhile, LSTM internal full connection is converted into full convolution to predict the spatiotemporal pedestrian trajectory sequences. The results show that our method reduces the displacement offset error better than recent works including Social-LSTM, SS-LSTM, CNN, Social-GAN, Scene-LSTM, providing more realistic trajectory prediction for the chaotic crowd.
引用
收藏
页码:29 / 39
页数:11
相关论文
共 50 条
  • [41] 可变卷积核Conv-LSTM在滑坡灾害预测中的应用
    朱天强
    聂闻
    吴贤振
    [J]. 福建电脑, 2023, 39 (12) : 28 - 31
  • [42] Fine-Tuning of Predictive Models CNN-LSTM and CONV-LSTM for Nowcasting PM2.5 Level
    Putri, Tafia Hasna
    Caraka, Rezzy Eko
    Toharudin, Toni
    Kim, Yunho
    Chen, Rung-Ching
    Gio, Prana Ugiana
    Sakti, Anjar Dimara
    Pontoh, Resa Septiani
    Pratiwi, Indah Reski
    Nugraha, Farid Azhar Lutfi
    Azzahra, Thalita Safa
    Cerelia, Jessica Jesslyn
    Darmawan, Gumgum
    Faidah, Defi Yusti
    Pardamean, Bens
    [J]. IEEE ACCESS, 2024, 12 : 28988 - 29003
  • [43] Golden eagle optimized CONV-LSTM and non-negativity-constrained autoencoder to support spatial and temporal features in cancer drug response prediction
    Hajim, Wesam Ibrahim
    Zainudin, Suhaila
    Daud, Kauthar Mohd
    Alheeti, Khattab
    [J]. PeerJ Computer Science, 2024, 10
  • [44] Continuous blood pressure prediction system using Conv-LSTM network on hybrid latent features of photoplethysmogram (PPG) and electrocardiogram (ECG) signals
    Bharindra Kamanditya
    Yunendah Nur Fuadah
    Nurul Qashri Mahardika T.
    Ki Moo Lim
    [J]. Scientific Reports, 14 (1)
  • [45] POI-GAN: A Pedestrian Trajectory Prediction Method for Service Scenarios
    Li, Ye
    Zhang, Chi
    Zhou, Jingkang
    Zhou, Shengcui
    [J]. IEEE ACCESS, 2024, 12 : 53293 - 53305
  • [46] A dual-stage attention-based Conv-LSTM network for spatio-temporal correlation and multivariate time series prediction
    Xiao, Yuteng
    Yin, Hongsheng
    Zhang, Yudong
    Qi, Honggang
    Zhang, Yundong
    Liu, Zhaoyang
    [J]. INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, 2021, 36 (05) : 2036 - 2057
  • [47] Embedding group and obstacle information in LSTM networks for human trajectory prediction in crowded scenes
    Bisagno, Niccolo
    Saltori, Cristiano
    Zhang, Bo
    De Natale, Francesco G. B.
    Conci, Nicola
    [J]. COMPUTER VISION AND IMAGE UNDERSTANDING, 2021, 203 (203)
  • [48] Pedestrian Trajectory Prediction in Crowded Environments Using Social Attention Graph Neural Networks
    Zong, Mengya
    Chang, Yuchen
    Dang, Yutian
    Wang, Kaiping
    [J]. Applied Sciences (Switzerland), 2024, 14 (20):
  • [49] Spatial-Temporal-Spectral LSTM: A Transferable Model for Pedestrian Trajectory Prediction
    Zhang, Chi
    Ni, Zhongjun
    Berger, Christian
    [J]. IEEE TRANSACTIONS ON INTELLIGENT VEHICLES, 2024, 9 (01): : 2836 - 2849
  • [50] A Location-Velocity-Temporal Attention LSTM Model for Pedestrian Trajectory Prediction
    Xue, Hao
    Huynh, Du Q.
    Reynolds, Mark
    [J]. IEEE ACCESS, 2020, 8 : 44576 - 44589