Enhanced Optical Forces by Hybrid Long-Range Plasmonic Waveguides

被引:14
|
作者
Chen, Lin [1 ]
Zhang, Tian [1 ]
Li, Xun [2 ]
机构
[1] Huazhong Univ Sci & Technol, Wuhan Natl Lab Optoelect, Wuhan 430074, Peoples R China
[2] Mc Master Univ, Dept Elect & Comp Engn, Hamilton, ON L8S 4K1, Canada
关键词
Dielectric waveguides; nanophotonics; optical waveguides; plasmons; SUBWAVELENGTH CONFINEMENT; CAVITY OPTOMECHANICS; RADIATION PRESSURE; BACK-ACTION; NANOPARTICLES; MANIPULATION; PARTICLES; SCALE; MODE; POLARITON;
D O I
10.1109/JLT.2013.2283271
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
Compared with optical resonant structures, current plasmonic waveguides have the advantage of enhancing optical forces in a broad range of wavelengths, but the enhancement can only be maintained for several dozens of microns at 1.55 mu m. Here, a hybrid long-range plasmonic waveguide, consisting of two identical dielectric nanowires symmetrically placed on each side of a thin metal film, is proposed for optical forces. Strong optical coupling between the dielectric waveguide mode and long-range plasmonic mode leads to enhanced optical forces on the dielectric nanowire at low input optical power due to the deep subwavelength optical energy confinement. The enhancement can be maintained for distances of 1 similar to 2 orders of magnitude larger than that of previous plasmonic waveguides. The deep subwavelength optical confinement as well as enhanced field gradient also allows efficient trapping of single nanoscale particle, while the smaller propagation loss ensures a much larger trapping region at the same input optical power. The present results enable the potential applications of precisely controlling the positions of dielectric nanowires as well as manipulating a single nanoparticle such as a biomolecule and one quantum dot.
引用
收藏
页码:3432 / 3438
页数:7
相关论文
共 50 条
  • [21] A new long-range single nanotube hybrid plasmonic waveguide
    Cai, Ming
    Qu, Sheng
    Wang, Shulong
    Hu, Zeyu
    Wu, Zhenjie
    Liu, Hongxia
    [J]. 9TH INTERNATIONAL SYMPOSIUM ON ADVANCED OPTICAL MANUFACTURING AND TESTING TECHNOLOGIES (AOMATT 2018): MICRO- AND NANO-OPTICS, CATENARY OPTICS, AND SUBWAVELENGTH ELECTROMAGNETICS, 2019, 10840
  • [22] A hybrid plasmonic waveguide for subwavelength confinement and long-range propagation
    Oulton, R. F.
    Sorger, V. J.
    Genov, D. A.
    Pile, D. F. P.
    Zhang, X.
    [J]. NATURE PHOTONICS, 2008, 2 (08) : 496 - 500
  • [23] Characterization of long-range plasmonic waveguides at visible to near-infrared regime
    Huang, Sheng-Ting
    Lai, Chien-Chih
    Sheu, Fang-Wen
    Tsai, Wan-Shao
    [J]. AIP ADVANCES, 2017, 7 (12):
  • [24] Efficient interfacing photonic and long-range dielectric-loaded plasmonic waveguides
    Chen, Yiting
    Zenin, Vladimir A.
    Leosson, Kristjan
    Shi, Xueliang
    Nielsen, Michael G.
    Bozhevolnyi, Sergey I.
    [J]. OPTICS EXPRESS, 2015, 23 (07): : 9100 - 9108
  • [25] CMOS-Compatible Long-Range Dielectric-Loaded Plasmonic Waveguides
    Shi, Xueliang
    Zhang, Xianmin
    Han, Zhanghua
    Levy, Uriel
    Bozhevolnyi, Sergey I.
    [J]. JOURNAL OF LIGHTWAVE TECHNOLOGY, 2013, 31 (21) : 3361 - 3367
  • [26] Long-range surface plasmon polariton waveguides for optical interconnections
    Ju, Jung Jin
    Park, Suntak
    Kim, Min-su
    Kim, Jin Tae
    Park, Seung Koo
    Lee, Myung-Hyun
    [J]. 2007 PACIFIC RIM CONFERENCE ON LASERS AND ELECTRO-OPTICS, VOLS 1-4, 2007, : 1119 - +
  • [27] A long-range plasmonic optical waveguide corner mirror chip
    Markey, Laurent
    Vernoux, Christian
    Hammani, Kamal
    Arocas, Juan
    Weeber, Jean-Claude
    Dereux, Alain
    [J]. MICRO AND NANO ENGINEERING, 2020, 7
  • [28] NONADIABATIC LONG-RANGE FORCES
    DALGARNO, A
    DRAKE, GWF
    VICTOR, GA
    [J]. PHYSICAL REVIEW, 1968, 176 (01): : 194 - &
  • [29] LONG-RANGE DIFFUSIOPHORETIC FORCES
    DERYAGIN, BV
    DUKHIN, SS
    [J]. COLLOID JOURNAL OF THE USSR, 1984, 46 (04): : 571 - 575
  • [30] LONG-RANGE INTERMOLECULAR FORCES
    DAHLER, JS
    HIRSCHFELDER, JO
    [J]. JOURNAL OF CHEMICAL PHYSICS, 1956, 25 (05): : 986 - 1005