Numerical Investigation Into the Highly Nonlinear Heat Transfer Equation with Bremsstrahlung Emission in the Inertial Confinement Fusion Plasmas

被引:4
|
作者
Habibi, M. [1 ]
Oloumi, M. [1 ]
Hosseinkhani, H. [1 ]
Magidi, S. [1 ]
机构
[1] Nucl Sci & Technol Res Inst, Plasma & Fus Res Sch, Tehran 14395836, Iran
关键词
Crank-Nicolson method; Newton-Raphson method; Bremsstrahlung emission; electron heat transfer; STEEP TEMPERATURE-GRADIENTS; LASER-PRODUCED PLASMAS; THERMAL-CONDUCTIVITY; TRANSPORT; SIMULATIONS; WAVES; FLOW;
D O I
10.1002/ctpp.201500057
中图分类号
O35 [流体力学]; O53 [等离子体物理学];
学科分类号
070204 ; 080103 ; 080704 ;
摘要
A highly nonlinear parabolic partial differential equation that models the electron heat transfer process in laser inertial fusion has been solved numerically. The strong temperature dependence of the electron thermal conductivity and heat loss term (Bremsstrahlung emission) makes this a highly nonlinear process. In this case, an efficient numerical method is developed for the energy transport mechanism from the region of energy deposition into the ablation surface by a combination of the Crank-Nicolson scheme and the Newton-Raphson method. The quantitative behavior of the electron temperature and the comparison between analytic and numerical solutions are also investigated. For more clarification, the accuracy and conservation of energy in the computations are tested. The numerical results can be used to evaluate the nonlinear electron heat conduction, considering the released energy of the laser pulse at the Deuterium-Tritium (DT) targets and preheating by heat conduction ahead of a compression shock in the inertial confinement fusion (ICF) approach. (c) 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim
引用
收藏
页码:677 / 684
页数:8
相关论文
共 38 条
  • [1] Analysis of a kinetic model for electron heat transport in inertial confinement fusion plasmas
    Chrisment, A.
    Loiseau, P.
    Feugeas, J. -l.
    Masson-Laborde, P. -e.
    Mathiaud, J.
    Tikhonchuk, V.
    Nicolai, Ph.
    PHYSICS OF PLASMAS, 2022, 29 (06)
  • [2] HEAT-TRANSFER IN INERTIAL CONFINEMENT FUSION-REACTOR SYSTEMS
    HOVINGH, J
    NUCLEAR ENGINEERING AND DESIGN, 1982, 68 (03) : 283 - 291
  • [3] Nonlocal Heat Transfer in a Laser Inertial Confinement Fusion for the Direct Irradiation Scheme
    Glazyrin, S., I
    Lykov, V. A.
    Karpov, S. A.
    Karlykhanov, N. G.
    Gryaznykh, D. A.
    Bychenkov, V. Yu
    JETP LETTERS, 2022, 116 (02) : 83 - 89
  • [4] Nonlocal Heat Transfer in a Laser Inertial Confinement Fusion for the Direct Irradiation Scheme
    S. I. Glazyrin
    V. A. Lykov
    S. A. Karpov
    N. G. Karlykhanov
    D. A. Gryaznykh
    V. Yu. Bychenkov
    JETP Letters, 2022, 116 : 83 - 89
  • [5] Resonance between heat-carrying electrons and Langmuir waves in inertial confinement fusion plasmas
    Rozmus, W.
    Chapman, T.
    Brantov, A.
    Winjum, B. J.
    Berger, R. L.
    Brunner, S.
    Bychenkov, V. Yu.
    Tableman, A.
    Tzoufras, M.
    Glenzer, S.
    PHYSICS OF PLASMAS, 2016, 23 (01)
  • [6] Effects of non-local thermodynamic equilibrium conditions on numerical simulations of inertial confinement fusion plasmas
    N K Gupta
    B K Godwal
    Pramana, 2002, 59 : 33 - 51
  • [7] Effects of non-local thermodynamic equilibrium conditions on numerical simulations of inertial confinement fusion plasmas
    Gupta, NK
    Godwal, BK
    PRAMANA-JOURNAL OF PHYSICS, 2002, 59 (01): : 33 - 51
  • [8] EXTERNAL HEAT TRANSFER COEFFICIENT MEASUREMENTS ON A SURROGATE INDIRECT INERTIAL CONFINEMENT FUSION TARGET
    Miles, Robin
    Havstad, Mark
    LeBlanc, Mary
    Golosker, Ilya
    Chang, Allan
    Rosso, Paul
    FUSION SCIENCE AND TECHNOLOGY, 2015, 68 (04) : 780 - 787
  • [9] Analysis of a kinetic model for electron heat transport in inertial confinement fusion plasmas (vol 29, 062301, 2022)
    Chrisment, A.
    Loiseau, P.
    Feugeas, J. -L.
    Masson-Laborde, P. -E.
    Mathiaud, J.
    Tikhonchuk, V.
    Nicolai, Ph.
    PHYSICS OF PLASMAS, 2022, 29 (07)
  • [10] Mitigation of cross-beam energy transfer in inertial-confinement-fusion plasmas with enhanced laser bandwidth
    Bates, J. W.
    Myatt, J. F.
    Shaw, J. G.
    Follett, R. K.
    Weaver, J. L.
    Lehmberg, R. H.
    Obenschain, S. P.
    PHYSICAL REVIEW E, 2018, 97 (06)