Lovasz-Saks-Schrijver ideals and parity binomial edge ideals of graphs

被引:5
|
作者
Kumar, Arvind [1 ,2 ]
机构
[1] Indian Inst Technol Madras, Dept Math, Chennai 600036, Tamil Nadu, India
[2] Indian Inst Technol Delhi, Dept Math, New Delhi 110016, India
关键词
ORTHOGONAL REPRESENTATIONS; REGULARITY; REES;
D O I
10.1016/j.ejc.2020.103274
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Let G be a simple graph on n vertices. Let L-G and I-G denote the Lovasz-Saks-Schrijver(LSS) ideal and parity binomial edge ideal of G in the polynomial ring S = K[x(1),..., x(n), y(1),..., y(n)] respectively. We classify graphs whose LSS ideals and parity binomial edge ideals are complete intersections. We also classify graphs whose LSS ideals and parity binomial edge ideals are almost complete intersections, and we prove that their Rees algebra is Cohen-Macaulay. We compute the second graded Betti number and obtain a minimal presentation of LSS ideals of trees and odd unicyclic graphs. We also obtain an explicit description of the defining ideal of the symmetric algebra of LSS ideals of trees and odd unicyclic graphs. (C) 2020 Elsevier Ltd. All rights reserved.
引用
收藏
页数:19
相关论文
共 50 条
  • [41] Generalized binomial edge ideals
    Rauh, Johannes
    [J]. ADVANCES IN APPLIED MATHEMATICS, 2013, 50 (03) : 409 - 414
  • [42] Closed binomial edge ideals
    Peeva, Irena
    [J]. JOURNAL FUR DIE REINE UND ANGEWANDTE MATHEMATIK, 2023, 2023 (803): : 1 - 33
  • [43] Licci binomial edge ideals
    Ene, Viviana
    Rinaldo, Giancarlo
    Terai, Naoki
    [J]. JOURNAL OF COMBINATORIAL THEORY SERIES A, 2020, 175
  • [44] Binomial Edge Ideals: A Survey
    Madani, Sara Saeedi
    [J]. MULTIGRADED ALGEBRA AND APPLICATIONS, 2018, 238 : 83 - 94
  • [45] On the regularity of binomial edge ideals
    Ene, Viviana
    Zarojanu, Andrei
    [J]. MATHEMATISCHE NACHRICHTEN, 2015, 288 (01) : 19 - 24
  • [46] Local cohomology of binomial edge ideals and their generic initial ideals
    Josep Àlvarez Montaner
    [J]. Collectanea Mathematica, 2020, 71 : 331 - 348
  • [47] Local cohomology of binomial edge ideals and their generic initial ideals
    Alvarez Montaner, Josep
    [J]. COLLECTANEA MATHEMATICA, 2020, 71 (02) : 331 - 348
  • [48] Regularity of binomial edge ideals of Cohen-Macaulay bipartite graphs
    Jayanthan, A. V.
    Kumar, Arvind
    [J]. COMMUNICATIONS IN ALGEBRA, 2019, 47 (11) : 4797 - 4805
  • [49] Cohen-Macaulay property of binomial edge ideals with girth of graphs
    Saha, Kamalesh
    Sengupta, Indranath
    [J]. JOURNAL OF ALGEBRA, 2024, 658 : 533 - 555
  • [50] Sequentially Cohen-Macaulay binomial edge ideals of closed graphs
    Ene, Viviana
    Rinaldo, Giancarlo
    Terai, Naoki
    [J]. RESEARCH IN THE MATHEMATICAL SCIENCES, 2022, 9 (03)