Human motion recognition with a convolution kernel

被引:0
|
作者
Cao, Dongwei [1 ]
Masoud, Osama T. [1 ]
Boley, Daniel [1 ]
机构
[1] Univ Minnesota, Dept Comp Sci & Engn, Minneapolis, MN 55455 USA
基金
美国国家科学基金会;
关键词
human motion recognition; convolution kernels; support vector machines;
D O I
10.1109/ROBOT.2006.1642359
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
We address the problem of human motion recognition in this paper. The goal of human motion recognition is to recognize the type of motion recorded in a video clip, which consists of a set of temporarily ordered frames. By defining a Mercer kernel between two video clips directly, we propose in this paper a recognition strategy that can incorporate both the information of each individual frame and the temporal ordering between frames. Combining the proposed kernel with the support vector machine, which is one of the most effective classification paradigms, the resulting recognition strategy exhibits excellent performance over real data sets.
引用
收藏
页码:4270 / +
页数:2
相关论文
共 50 条
  • [21] Real-time video super-resolution via motion convolution kernel estimation
    Bare, Bahetiyaer
    Yan, Bo
    Ma, Chenxi
    Li, Ke
    [J]. NEUROCOMPUTING, 2019, 367 : 236 - 245
  • [22] Human Motion Capturing and Recognition by Tracking Motion Features
    Back, Kristine
    Leon, Fernando Puente
    [J]. TM-TECHNISCHES MESSEN, 2012, 79 (04) : 189 - 195
  • [23] Hand motion recognition via multi-kernel manifold learning
    Li, Xiangzhe
    Wang, Sheng
    Zhang, Yuanpeng
    Wu, Qinfeng
    [J]. JOURNAL OF AMBIENT INTELLIGENCE AND HUMANIZED COMPUTING, 2021,
  • [24] How Good Is Kernel Descriptor on Depth Motion Map for Action Recognition
    Thanh-Hai Tran
    Van-Toi Nguyen
    [J]. COMPUTER VISION SYSTEMS (ICVS 2015), 2015, 9163 : 137 - 146
  • [25] RGB-D object recognition based on the joint deep random kernel convolution and ELM
    Yin, Yunhua
    Li, Huifang
    [J]. JOURNAL OF AMBIENT INTELLIGENCE AND HUMANIZED COMPUTING, 2020, 11 (11) : 4337 - 4346
  • [26] RGB-D object recognition based on the joint deep random kernel convolution and ELM
    Yunhua Yin
    Huifang Li
    [J]. Journal of Ambient Intelligence and Humanized Computing, 2020, 11 : 4337 - 4346
  • [27] Personalized motion kernel learning for human pose estimation
    Wang, Xue
    Feng, Runyang
    Chen, Haoming
    Zimmermann, Roger
    Liu, Zhenguang
    Liu, Hengchang
    [J]. INTERNATIONAL JOURNAL OF INTELLIGENT SYSTEMS, 2022, 37 (09) : 5859 - 5879
  • [29] Convolution-kernel-based optimal trade-off filters for optical pattern recognition
    GrunnetJepsen, A
    Tonda, S
    Laude, V
    [J]. APPLIED OPTICS, 1996, 35 (20) : 3874 - 3879
  • [30] Convolution-kernel-based optimal trade-off filters for optical pattern recognition
    Laboratoire Central de Recherches, Thomson-CSF, Domaine de Corbeville, F-91404 Orsay, France
    [J]. Appl. Opt., 20 (3874-3879):