Recycling of High Ferrous Bauxite Reducing Slag for Synthesis of CaAl2Si2O8-Al2O3-CaAl12O19 Composite

被引:4
|
作者
Zhang, Ying-yi [1 ,2 ]
Qi, Yuan-hong [2 ]
Zou, Zong-shu [3 ]
机构
[1] Chongqing Univ, Coll Mat Sci & Engn, Chongqing 400030, Peoples R China
[2] Cent Iron & Steel Res Inst, State Key Lab Adv Steel Proc & Prod, Beijing 100081, Peoples R China
[3] Northeastern Univ, Sch Met, Shenyang 110819, Liaoning, Peoples R China
基金
中国国家自然科学基金;
关键词
calcium hexaluminate; composite; reaction sintering; bauxite reducing slag; phase transformation; CALCIUM HEXALUMINATE; WESTERN GUANGXI; RED MUD; MAGNETIC SEPARATION; DIRECT REDUCTION; DEPOSITS; CHINA; IRON; RECOVERY; ALUMINA;
D O I
10.1016/S1006-706X(16)30185-6
中图分类号
TF [冶金工业];
学科分类号
0806 ;
摘要
CaAl2Si2O8-Al2O3-CaAl12O19 (CAS(2)-Al2O3-CA(6)) composite was synthesized through reaction sintering alumina and bauxite reducing slag. The CAS(2)-Al2O3-CA(6) composite was mainly composed of alpha-Al2O3, CAS(2) and CA(6). Gehlenite (Ca2Al2SiO7, C(2)AS) phase was effectively transformed to CAS(2) and CA(6) through high-temperature reaction sintering under weak oxidizing atmosphere at 1400 degrees C for 4 h. SEM (scanning electron microscopy) and EDS (energy dispersive spectroscopy) analysis indicated that black and needle-shaped Al2O3, rhombic or irregular polygonal-shaped FeAl2O4, and glassy phase Ca2Al2SiO7 disappeared after the reaction sintering. The light gray and flaky hexagon crystals of CaAl12O19 (10 mu m) and the grainy particles of Al2O3 (2 7 mu m) were observed in the CAS(2)-Al2O3-CA(6) composite. The gray crystals of CAS(2) act as the binding phase and arc distributed around CA(6) and Al2O3. CAS(2)-Al2O3-CA(6) composite exhibits high refractoriness and service temperature, which are 1650 degrees C and 1450 degrees C, respectively. Reaction sintering of alumina and bauxite reducing slag is a feasible method for the synthesis of CAS(2)-Al2O3-CA(6) composite.
引用
收藏
页码:1255 / 1261
页数:7
相关论文
共 50 条
  • [41] CaAl2Si2O8 polymorphs: Sensitive geothermometers and geospeedometers
    Gorelova, Liudmila A.
    Vereshchagin, Oleg S.
    Bocharov, Vladimir N.
    Krivovichev, Sergey V.
    Zolotarev, Andrey A.
    Rassomakhin, Mikhail A.
    GEOSCIENCE FRONTIERS, 2023, 14 (01)
  • [42] Degree of polymerization of the CaAl2Si2O8 aluminosilicate glass
    Kuryaeva, R. G.
    GLASS PHYSICS AND CHEMISTRY, 2006, 32 (05) : 505 - 510
  • [43] SYNTHESIS AND PROPERTIES OF CAAL2O4-COATED AL2O3 MICROCOMPOSITE POWDERS
    DESAI, PG
    XU, ZK
    LEWIS, JA
    JOURNAL OF THE AMERICAN CERAMIC SOCIETY, 1995, 78 (11) : 2881 - 2888
  • [44] FERROELASTIC PHASE-TRANSITION ALONG THE JOIN CAAL2SI2O8-SRAL2SI2O8
    MCGUINN, MD
    REDFERN, SAT
    AMERICAN MINERALOGIST, 1994, 79 (1-2) : 24 - 30
  • [45] NUCLEAR MAGNETIC RESONANCE OF 27AL IN ANORTHITE CAAL2SI2O8
    BRINKMANN, D
    STAHLI, JL
    HELVETICA PHYSICA ACTA, 1968, 41 (03): : 274 - +
  • [46] Regulation of phase evolution of CaAl12O19 on properties of in-situ formed MgAl2O4-CaAl12O19 composites
    Wang, Xiao-jun
    Xuan, Song-tong
    Feng, Ming
    Tian, Yu-ming
    JOURNAL OF MATERIALS RESEARCH AND TECHNOLOGY-JMR&T, 2021, 15 : 3908 - 3914
  • [47] High temperature corrosion of SiC-CaAl12O19 composite refractory by coal slag
    Si, Yaochen
    Li, Hongxia
    Sun, Honggang
    Xia, Miao
    Du, Yihao
    Shang, Xinlian
    Zhao, Shixian
    CORROSION SCIENCE, 2022, 206
  • [48] Synthesis and luminescence properties of composite CaAl2O4-2CaAl4O7:Eu3+ phosphor applied to white LEDs
    Dong, H. J.
    OPTOELECTRONICS AND ADVANCED MATERIALS-RAPID COMMUNICATIONS, 2011, 5 (5-6): : 617 - 620
  • [49] Activation energy for crystal growth in stoichiometric CaAl2Si2O8 and Ca2Al2Si2O9 glasses
    Islam, P
    Hill, R
    Stamboulis, A
    JOURNAL OF MATERIALS SCIENCE LETTERS, 2003, 22 (18) : 1287 - 1289
  • [50] Effect of Al2O3 on thermal properties of 0.5CaAl2Si2O8-0.5CaMgSi2O6 glass-ceramics
    Jeon, Chang Jun
    Lee, Jong Kyu
    Kim, Eung Soo
    CERAMICS INTERNATIONAL, 2012, 38 : S557 - S561