Gibbs posterior inference on value-at-risk

被引:9
|
作者
Syring, Nicholas [1 ]
Hong, Liang [2 ,3 ]
Martin, Ryan [4 ]
机构
[1] Washington Univ, Dept Math, Stat, Washington, MO USA
[2] Robert Morris Univ, Dept Math, Soc Actuaries, 6001 Univ Blvd, Moon Township, PA 15108 USA
[3] Robert Morris Univ, Dept Math, 6001 Univ Blvd, Moon Township, PA 15108 USA
[4] North Carolina State Univ, Dept Stat, Raleigh, NC 27695 USA
基金
美国国家科学基金会;
关键词
Direct posterior; discrepancy function; M-estimation; model misspecification; risk capital; robust estimation;
D O I
10.1080/03461238.2019.1573754
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Accurate estimation of value-at-risk (VaR) and assessment of associated uncertainty is crucial for both insurers and regulators, particularly in Europe. Existing approaches link data and VaR indirectly by first linking data to the parameter of a probability model, and then expressing VaR as a function of that parameter. This indirect approach exposes the insurer to model misspecification bias or estimation inefficiency, depending on whether the parameter is finite- or infinite-dimensional. In this paper, we link data and VaR directly via what we call a discrepancy function, and this leads naturally to a Gibbs posterior distribution for VaR that does not suffer from the aforementioned biases and inefficiencies. Asymptotic consistency and root-n concentration rate of the Gibbs posterior are established, and simulations highlight its superior finite-sample performance compared to other approaches.
引用
收藏
页码:548 / 557
页数:10
相关论文
共 50 条
  • [41] Value-at-risk in bakery procurement
    Wilson, William W.
    Nganje, William E.
    Hawes, Cullen R.
    [J]. REVIEW OF AGRICULTURAL ECONOMICS, 2007, 29 (03): : 581 - 595
  • [42] Nonparametric estimation of value-at-risk
    Jeong, Seok-Oh
    Kang, Kee-Hoon
    [J]. JOURNAL OF APPLIED STATISTICS, 2009, 36 (11) : 1225 - 1238
  • [43] On Some Models for Value-At-Risk
    Yu, Philip L. H.
    Li, Wai Keung
    Jin, Shusong
    [J]. ECONOMETRIC REVIEWS, 2010, 29 (5-6) : 622 - 641
  • [44] Kendall Conditional Value-at-Risk
    Durante, Fabrizio
    Gatto, Aurora
    Perrone, Elisa
    [J]. MATHEMATICAL AND STATISTICAL METHODS FOR ACTUARIAL SCIENCES AND FINANCE, MAF 2022, 2022, : 222 - 227
  • [45] Introduction to Var (Value-at-Risk)
    Wiener, Z
    [J]. RISK MANAGEMENT AND REGULATION IN BANKING, 1999, : 47 - 63
  • [46] On multivariate extensions of Value-at-Risk
    Cousin, Areski
    Di Bernardino, Elena
    [J]. JOURNAL OF MULTIVARIATE ANALYSIS, 2013, 119 : 32 - 46
  • [47] Conditional Value-at-Risk Approximation to Value-at-Risk Constrained Programs: A Remedy via Monte Carlo
    Hong, L. Jeff
    Hu, Zhaolin
    Zhang, Liwei
    [J]. INFORMS JOURNAL ON COMPUTING, 2014, 26 (02) : 385 - 400
  • [48] A Value-at-Risk Analysis of Credit Risk in Romania
    Herghiligiu, Roxana
    [J]. INNOVATION VISION 2020: FROM REGIONAL DEVELOPMENT SUSTAINABILITY TO GLOBAL ECONOMIC GROWTH, VOL I-VI, 2015, : 3070 - 3073
  • [49] Quantile Uncertainty and Value-at-Risk Model Risk
    Alexander, Carol
    Maria Sarabia, Jose
    [J]. RISK ANALYSIS, 2012, 32 (08) : 1293 - 1308
  • [50] Value-at-risk in uncertain random risk analysis
    Liu, Yuhan
    Ralescu, Dan A.
    [J]. INFORMATION SCIENCES, 2017, 391 : 1 - 8