Gibbs posterior inference on value-at-risk

被引:9
|
作者
Syring, Nicholas [1 ]
Hong, Liang [2 ,3 ]
Martin, Ryan [4 ]
机构
[1] Washington Univ, Dept Math, Stat, Washington, MO USA
[2] Robert Morris Univ, Dept Math, Soc Actuaries, 6001 Univ Blvd, Moon Township, PA 15108 USA
[3] Robert Morris Univ, Dept Math, 6001 Univ Blvd, Moon Township, PA 15108 USA
[4] North Carolina State Univ, Dept Stat, Raleigh, NC 27695 USA
基金
美国国家科学基金会;
关键词
Direct posterior; discrepancy function; M-estimation; model misspecification; risk capital; robust estimation;
D O I
10.1080/03461238.2019.1573754
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Accurate estimation of value-at-risk (VaR) and assessment of associated uncertainty is crucial for both insurers and regulators, particularly in Europe. Existing approaches link data and VaR indirectly by first linking data to the parameter of a probability model, and then expressing VaR as a function of that parameter. This indirect approach exposes the insurer to model misspecification bias or estimation inefficiency, depending on whether the parameter is finite- or infinite-dimensional. In this paper, we link data and VaR directly via what we call a discrepancy function, and this leads naturally to a Gibbs posterior distribution for VaR that does not suffer from the aforementioned biases and inefficiencies. Asymptotic consistency and root-n concentration rate of the Gibbs posterior are established, and simulations highlight its superior finite-sample performance compared to other approaches.
引用
收藏
页码:548 / 557
页数:10
相关论文
共 50 条
  • [1] Conditional Value-at-Risk: Semiparametric estimation and inference
    Wang, Chuan-Sheng
    Zhao, Zhibiao
    [J]. JOURNAL OF ECONOMETRICS, 2016, 195 (01) : 86 - 103
  • [2] INFERENCE FOR CONDITIONAL VALUE-AT-RISK OF A PREDICTIVE REGRESSION
    He, Yi
    Hou, Yanxi
    Peng, Liang
    Shen, Haipeng
    [J]. ANNALS OF STATISTICS, 2020, 48 (06): : 3442 - 3464
  • [3] Distributionally robust inference for extreme Value-at-Risk
    Yuen, Robert
    Stoev, Stilian
    Cooley, Dan
    [J]. INSURANCE MATHEMATICS & ECONOMICS, 2020, 92 : 70 - 89
  • [4] Tsallis value-at-risk: generalized entropic value-at-risk
    Zou, Zhenfeng
    Xia, Zichao
    Hu, Taizhong
    [J]. PROBABILITY IN THE ENGINEERING AND INFORMATIONAL SCIENCES, 2024, 38 (01) : 1 - 20
  • [5] Gibbs posterior inference on multivariate quantiles
    Bhattacharya, Indrabati
    Martin, Ryan
    [J]. JOURNAL OF STATISTICAL PLANNING AND INFERENCE, 2022, 218 : 106 - 121
  • [6] Distributionally robust reinsurance with Value-at-Risk and Conditional Value-at-Risk
    Liu, Haiyan
    Mao, Tiantian
    [J]. INSURANCE MATHEMATICS & ECONOMICS, 2022, 107 : 393 - 417
  • [7] Conditional Value-at-Risk and Average Value-at-Risk: Estimation and Asymptotics
    Chun, So Yeon
    Shapiro, Alexander
    Uryasev, Stan
    [J]. OPERATIONS RESEARCH, 2012, 60 (04) : 739 - 756
  • [8] Exact inference in diagnosing Value-at-Risk estimates - A Monte Carlo device
    Herwartz, Helmut
    [J]. ECONOMICS LETTERS, 2009, 103 (03) : 160 - 162
  • [9] A new approach to Value-at-Risk: GARCH-TSLx model with inference
    Altun, Emrah
    [J]. COMMUNICATIONS IN STATISTICS-SIMULATION AND COMPUTATION, 2020, 49 (12) : 3134 - 3151
  • [10] Monte Carlo Methods for Value-at-Risk and Conditional Value-at-Risk: A Review
    Hong, L. Jeff
    Hu, Zhaolin
    Liu, Guangwu
    [J]. ACM TRANSACTIONS ON MODELING AND COMPUTER SIMULATION, 2014, 24 (04):