Asymptotic properties of one-step M-estimators

被引:7
|
作者
Linke, Yuliana [1 ,2 ]
机构
[1] Sobolev Inst Math, Novosibirsk 630090, Russia
[2] Novosibirsk State Univ, Novosibirsk, Russia
基金
俄罗斯基础研究基金会;
关键词
One-step M-estimator; asymptotic normality; initial estimator; nonlinear regression; EFFICIENT ESTIMATION; HIGH BREAKDOWN; REGRESSION; BEHAVIOR; ROOTS; INFERENCES; NORMALITY; MODELS;
D O I
10.1080/03610926.2018.1487982
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
We study the asymptotic behavior of one-step M-estimators based on not necessarily independent identically distributed observations. In particular, we find conditions for asymptotic normality of these estimators. Asymptotic normality of one-step M-estimators is proven under a wide spectrum of constraints on the exactness of initial estimators. We discuss the question of minimal restrictions on the exactness of initial estimators. We also discuss the asymptotic behavior of the solution to an M-equation closest to the parameter under consideration. As an application, we consider some examples of one-step approximation of quasi-likelihood estimators in nonlinear regression.
引用
收藏
页码:4096 / 4118
页数:23
相关论文
共 50 条