On three-variable expanders over finite valuation rings

被引:0
|
作者
Le Quang Ham [3 ]
Nguyen Van The [3 ]
Tran, Phuc D. [4 ]
Le Anh Vinh [1 ,2 ]
机构
[1] Vietnam Natl Univ, Hanoi, Vietnam
[2] Vietnam Inst Educ Sci, Hanoi, Vietnam
[3] Vietnam Natl Univ, VNU Univ Sci, Hanoi, Vietnam
[4] Amer Univ Bulgaria, Dept Math & Sci, Blagoevgrad, Bulgaria
关键词
Expanders; finite valuation rings; sum product estimates;
D O I
10.1515/forum-2020-0203
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let R be a finite valuation ring of order q(r). In this paper, we prove that for any quadratic polynomial f(x, y, z) epsilon R [x, y, z] that is of the form axy + R(x) + S(y) + T(z) for some one-variable polynomials R, S, T, we have, vertical bar f(A, B, C)vertical bar >> min {q(r), vertical bar A parallel to B parallel to C vertical bar/q(2r-1)} for any A, B, C subset of R. We also study the sum-product type problems over finite valuation ring R. More precisely, we show that for any A subset of R with vertical bar A vertical bar >> q(r-1/3) then max{vertical bar AA vertical bar, vertical bar A(d) + A(d)vertical bar}, max{vertical bar A + A vertical bar, vertical bar A(2) + A(2)vertical bar}, max{vertical bar A - A vertical bar, vertical bar AA + AA vertical bar} >> vertical bar A vertical bar(2/3) q(r/3), and vertical bar f(A) + A vertical bar >> vertical bar A vertical bar(2/3) q(r/3) for any one variable quadratic polynomial f.
引用
收藏
页码:17 / 27
页数:11
相关论文
共 50 条
  • [31] Aczél’s iterations for three-variable means
    G. E. Sbérgamo
    Acta Mathematica Hungarica, 2020, 161 : 16 - 30
  • [32] Three-variable *-identities and ring homomorphisms of operator ideals
    Molnar, L
    Zalar, B
    PUBLICATIONES MATHEMATICAE-DEBRECEN, 1997, 50 (1-2): : 121 - 133
  • [33] Three-variable reversible Gray-Scott model
    Mahara, H
    Suematsu, NJ
    Yamaguchi, T
    Ohgane, K
    Nishiura, Y
    Shimomura, M
    JOURNAL OF CHEMICAL PHYSICS, 2004, 121 (18): : 8968 - 8972
  • [34] Flat modules over valuation rings
    Couchot, F.
    JOURNAL OF PURE AND APPLIED ALGEBRA, 2007, 211 (01) : 235 - 247
  • [35] UNISERIAL MODULES OVER VALUATION RINGS
    FUCHS, L
    SALCE, L
    JOURNAL OF ALGEBRA, 1983, 85 (01) : 14 - 31
  • [36] CURVES OVER DISCRETE VALUATION RINGS
    LICHTENBAUM, S
    AMERICAN JOURNAL OF MATHEMATICS, 1968, 90 (02) : 380 - +
  • [37] On Tannakian duality over valuation rings
    Wedhorn, T
    JOURNAL OF ALGEBRA, 2004, 282 (02) : 575 - 609
  • [38] Towards dimension expanders over finite fields
    Dvir, Zeev
    Shpilka, Amir
    TWENTY-THIRD ANNUAL IEEE CONFERENCE ON COMPUTATIONAL COMPLEXITY, PROCEEDINGS, 2008, : 304 - +
  • [39] Towards dimension expanders over finite fields
    Dvir, Zeev
    Shpilka, Amir
    COMBINATORICA, 2011, 31 (03) : 305 - 320
  • [40] Towards dimension expanders over finite fields
    Zeev Dvir
    Amir Shpilka
    Combinatorica, 2011, 31 : 305 - 320