On three-variable expanders over finite valuation rings

被引:0
|
作者
Le Quang Ham [3 ]
Nguyen Van The [3 ]
Tran, Phuc D. [4 ]
Le Anh Vinh [1 ,2 ]
机构
[1] Vietnam Natl Univ, Hanoi, Vietnam
[2] Vietnam Inst Educ Sci, Hanoi, Vietnam
[3] Vietnam Natl Univ, VNU Univ Sci, Hanoi, Vietnam
[4] Amer Univ Bulgaria, Dept Math & Sci, Blagoevgrad, Bulgaria
关键词
Expanders; finite valuation rings; sum product estimates;
D O I
10.1515/forum-2020-0203
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
Let R be a finite valuation ring of order q(r). In this paper, we prove that for any quadratic polynomial f(x, y, z) epsilon R [x, y, z] that is of the form axy + R(x) + S(y) + T(z) for some one-variable polynomials R, S, T, we have, vertical bar f(A, B, C)vertical bar >> min {q(r), vertical bar A parallel to B parallel to C vertical bar/q(2r-1)} for any A, B, C subset of R. We also study the sum-product type problems over finite valuation ring R. More precisely, we show that for any A subset of R with vertical bar A vertical bar >> q(r-1/3) then max{vertical bar AA vertical bar, vertical bar A(d) + A(d)vertical bar}, max{vertical bar A + A vertical bar, vertical bar A(2) + A(2)vertical bar}, max{vertical bar A - A vertical bar, vertical bar AA + AA vertical bar} >> vertical bar A vertical bar(2/3) q(r/3), and vertical bar f(A) + A vertical bar >> vertical bar A vertical bar(2/3) q(r/3) for any one variable quadratic polynomial f.
引用
收藏
页码:17 / 27
页数:11
相关论文
共 50 条