The Monotonic Sequence Theorem and Measurement of Lengths and Areas in Axiomatic Non-Standard Hyperrational Analysis

被引:1
|
作者
Lovyagin, Yuri N. [1 ,2 ]
Lovyagin, Nikita Yu [1 ,2 ]
机构
[1] St Petersburg State Univ, 7-9 Univ Skaya Nab, St Petersburg 199034, Russia
[2] St Petersburg State Univ, Fac Math & Mech, 28 Univ Sky Pr, St Petersburg 198504, Russia
关键词
axiomatic non-standard analysis; hyperrational numbers; line segment measurement; 26E35;
D O I
10.3390/axioms8020042
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
This paper lies in the framework of axiomatic non-standard analysis based on the non-standard arithmetic axiomatic theory. This arithmetic includes actual infinite numbers. Unlike the non-standard model of arithmetic, this approach does not take models into account but uses an axiomatic research method. In the axiomatic theory of non-standard arithmetic, hyperrational numbers are defined as triplets of hypernatural numbers. Since the theory of hyperrational numbers and axiomatic non-standard analysis is mainly published in Russian, in this article we give a brief review of its basic concepts and required results. Elementary hyperrational analysis includes defining and evaluating such notions as continuity, differentiability and integral calculus. We prove that a bounded monotonic sequence is a Cauchy sequence. Also, we solve the task of line segment measurement using hyperrational numbers. In fact, this allows us to approximate real numbers using hyperrational numbers, and shows a way to model real numbers and real functions using hyperrational numbers and functions.
引用
收藏
页数:12
相关论文
共 50 条
  • [21] Wild-Type Measles Viruses with Non-Standard Genome Lengths
    Bankamp, Bettina
    Liu, Chunyu
    Rivailler, Pierre
    Bera, Jayati
    Shrivastava, Susmita
    Kirkness, Ewen F.
    Bellini, William J.
    Rota, Paul A.
    [J]. PLOS ONE, 2014, 9 (04):
  • [22] A NAIVE APPROACH TO NON-STANDARD ANALYSIS
    ROBERT, A
    [J]. DIALECTICA, 1984, 38 (04) : 287 - 296
  • [23] Non-standard analysis in dynamic geometry
    Strobel, Michael
    [J]. JOURNAL OF SYMBOLIC COMPUTATION, 2020, 97 : 69 - 108
  • [24] Non-standard analysis for fractal calculus
    Golmankhaneh, Alireza
    Welch, Kerri
    Serpa, Cristina
    Jorgensen, Palle E. T.
    [J]. JOURNAL OF ANALYSIS, 2023, 31 (03): : 1895 - 1916
  • [25] Non-standard analysis for fractal calculus
    Alireza Khalili Golmankhaneh
    Kerri Welch
    Cristina Serpa
    Palle E. T. Jørgensen
    [J]. The Journal of Analysis, 2023, 31 : 1895 - 1916
  • [26] Generalized functions and non-standard analysis
    Delcroix, A
    [J]. MONATSHEFTE FUR MATHEMATIK, 1997, 123 (02): : 127 - 134
  • [27] NON-STANDARD ANALYSIS AND MULTIPLICATION OF DISTRIBUTIONS
    李邦河
    [J]. Science in China,SerA., 1978, Ser.A.1978 (05) : 561 - 585
  • [28] Non-standard analysis and representation of reality
    Lobry, C.
    Sari, T.
    [J]. INTERNATIONAL JOURNAL OF CONTROL, 2008, 81 (03) : 517 - 534
  • [29] NON-STANDARD ANALYSIS AND MULTIPLICATION OF DISTRIBUTIONS
    李邦河
    [J]. Science China Mathematics, 1978, (05) : 561 - 585
  • [30] Argumentative analysis of irony standard and non-standard irony
    Nishiwaki, Saori
    [J]. LETRAS DE HOJE-ESTUDOS E DEBATES EM LINGUISTICA LITERATURA E LINGUA PORTUGUESA, 2015, 50 (03): : 287 - 293