DISTANCES BETWEEN STATIONARY DISTRIBUTIONS OF DIFFUSIONS AND SOLVABILITY OF NONLINEAR FOKKER-PLANCK-KOLMOGOROV EQUATIONS

被引:6
|
作者
Bogachev, V. I. [1 ,2 ,3 ]
Kirillov, A. I. [4 ]
Shaposhnikov, S. V. [1 ,2 ,3 ]
机构
[1] Moscow MV Lomonosov State Univ, Fac Mech & Math, Moscow, Russia
[2] St Tikhons Orthodox Univ, Moscow, Russia
[3] Natl Res Univ, Higher Sch Econ, Moscow, Russia
[4] Russian Fdn Basic Res, Moscow, Russia
基金
俄罗斯科学基金会;
关键词
stationary Fokker-Planck-Kolmogorov equation; total variation distance; Kantorovich metric; Prohorov metric; nonlinear Fokker-Planck-Kolmogorov equation; ELLIPTIC-EQUATIONS; INVARIANT-MEASURES; TRANSITION-PROBABILITIES; KANTOROVICH; REGULARITY; DENSITIES;
D O I
10.1137/S0040585X97T988460
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
This paper is concerned with investigation of stationary distributions of diffusion processes. We obtain estimates for the Kantorovich, Prohorov, and total variation distances between stationary distributions of diffusions with different diffusion matrices and different drift coefficients. Applications are given to nonlinear stationary Fokker-Planck-Kolmogorov equations, for which new conditions for the existence and uniqueness of probability solutions are found; moreover, these conditions are optimal in a sense.
引用
收藏
页码:12 / 34
页数:23
相关论文
共 50 条
  • [31] ON THE INTEGRABILITY OF THE AVERAGED FOKKER-PLANCK-KOLMOGOROV EQUATIONS.
    Nguyen Dong Anh
    Mechanics of solids, 1985, 20 (03) : 44 - 47
  • [32] Uniqueness problems for degenerate Fokker-Planck-Kolmogorov equations
    Bogachev V.I.
    Röckner M.
    Shaposhnikov S.V.
    Journal of Mathematical Sciences, 2015, 207 (2) : 147 - 165
  • [33] On positive and probability solutions to the stationary Fokker-Planck-Kolmogorov equation
    V. I. Bogachev
    M. Röckner
    S. V. Shaposhnikov
    Doklady Mathematics, 2012, 85 : 350 - 354
  • [34] Estimates for Solutions to Fokker-Planck-Kolmogorov Equations with Integrable Drifts
    Bogachev, V. I.
    Shaposhnikov, A. V.
    Shaposhnikov, S. V.
    DOKLADY MATHEMATICS, 2018, 98 (03) : 559 - 563
  • [35] On Sobolev Classes Containing Solutions to Fokker-Planck-Kolmogorov Equations
    Bogachev, V. I.
    Popova, S. N.
    Shaposhnikov, S. V.
    DOKLADY MATHEMATICS, 2018, 98 (02) : 498 - 501
  • [36] Uniqueness of probability solutions to nonlinear Fokker-Planck-Kolmogorov equation
    O. A. Manita
    M. S. Romanov
    S. V. Shaposhnikov
    Doklady Mathematics, 2015, 91 : 142 - 146
  • [37] Fokker-Planck-Kolmogorov equations with a partially degenerate diffusion matrix
    Manita, O. A.
    Romanov, M. S.
    Shaposhnikov, S. V.
    DOKLADY MATHEMATICS, 2017, 96 (01) : 384 - 388
  • [38] Superposition Principle for the Fokker-Planck-Kolmogorov Equations with Unbounded Coefficients
    Krasovitskii, T. I.
    Shaposhnikov, S. V.
    FUNCTIONAL ANALYSIS AND ITS APPLICATIONS, 2022, 56 (04) : 282 - 298
  • [39] Fractional Fokker-Planck-Kolmogorov equations with Holder continuous drift
    Tian, Rongrong
    Wei, Jinlong
    FRACTIONAL CALCULUS AND APPLIED ANALYSIS, 2024, 27 (05) : 2456 - 2481
  • [40] Uniqueness of probability solutions to nonlinear Fokker-Planck-Kolmogorov equation
    Manita, O. A.
    Romanov, M. S.
    Shaposhnikov, S. V.
    DOKLADY MATHEMATICS, 2015, 91 (02) : 142 - 146