Model-based reinforcement learning under concurrent schedules of reinforcement in rodents

被引:22
|
作者
Huh, Namjung
Jo, Suhyun
Kim, Hoseok
Sul, Jung Hoon
Jung, Min Whan [1 ]
机构
[1] Ajou Univ, Sch Med, Neurobiol Lab, Inst Med Sci, Suwon 443721, South Korea
关键词
ANTERIOR CINGULATE CORTEX; MIXED-STRATEGY GAME; DECISION-MAKING; PREFRONTAL CORTEX; DOPAMINE NEURONS; MATCHING LAW; HUMANS; CHOICE; REPRESENTATION; STRIATUM;
D O I
10.1101/lm.1295509
中图分类号
Q189 [神经科学];
学科分类号
071006 ;
摘要
Reinforcement learning theories postulate that actions are chosen to maximize a long-term sum of positive outcomes based on value functions, which are subjective estimates of future rewards. In simple reinforcement learning algorithms, value functions are updated only by trial-and-error, whereas they are updated according to the decision-maker's knowledge or model of the environment in model-based reinforcement learning algorithms. To investigate how animals update value functions, we trained rats under two different free-choice tasks. The reward probability of the unchosen target remained unchanged in one task, whereas it increased over time since the target was last chosen in the other task. The results show that goal choice probability increased as a function of the number of consecutive alternative choices in the latter, but not the former task, indicating that the animals were aware of time-dependent increases in arming probability and used this information in choosing goals. In addition, the choice behavior in the latter task was better accounted for by a model-based reinforcement learning algorithm. Our results show that rats adopt a decision-making process that cannot be accounted for by simple reinforcement learning models even in a relatively simple binary choice task, suggesting that rats can readily improve their decision-making strategy through the knowledge of their environments.
引用
收藏
页码:315 / 323
页数:9
相关论文
共 50 条
  • [21] Transferring Instances for Model-Based Reinforcement Learning
    Taylor, Matthew E.
    Jong, Nicholas K.
    Stone, Peter
    MACHINE LEARNING AND KNOWLEDGE DISCOVERY IN DATABASES, PART II, PROCEEDINGS, 2008, 5212 : 488 - 505
  • [22] Model-based average reward reinforcement learning
    Tadepalli, P
    Ok, D
    ARTIFICIAL INTELLIGENCE, 1998, 100 (1-2) : 177 - 224
  • [23] A comparison of direct and model-based reinforcement learning
    Atkeson, CG
    Santamaria, JC
    1997 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION - PROCEEDINGS, VOLS 1-4, 1997, : 3557 - 3564
  • [24] Continual Model-Based Reinforcement Learning with Hypernetworks
    Huang, Yizhou
    Xie, Kevin
    Bharadhwaj, Homanga
    Shkurti, Florian
    2021 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA 2021), 2021, : 799 - 805
  • [25] Modeling Survival in model-based Reinforcement Learning
    Moazami, Saeed
    Doerschuk, Peggy
    2020 SECOND INTERNATIONAL CONFERENCE ON TRANSDISCIPLINARY AI (TRANSAI 2020), 2020, : 17 - 24
  • [26] Adaptive Discretization for Model-Based Reinforcement Learning
    Sinclair, Sean R.
    Wang, Tianyu
    Jain, Gauri
    Banerjee, Siddhartha
    Yu, Christina Lee
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS (NEURIPS 2020), 2020, 33
  • [27] Model-Based Reinforcement Learning With Isolated Imaginations
    Pan, Minting
    Zhu, Xiangming
    Zheng, Yitao
    Wang, Yunbo
    Yang, Xiaokang
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2024, 46 (05) : 2788 - 2803
  • [28] Model-based Reinforcement Learning and the Eluder Dimension
    Osband, Ian
    Van Roy, Benjamin
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 27 (NIPS 2014), 2014, 27
  • [29] Model-Based Reinforcement Learning in Robotics: A Survey
    Sun S.
    Lan X.
    Zhang H.
    Zheng N.
    Moshi Shibie yu Rengong Zhineng/Pattern Recognition and Artificial Intelligence, 2022, 35 (01): : 1 - 16
  • [30] MOReL: Model-Based Offline Reinforcement Learning
    Kidambi, Rahul
    Rajeswaran, Aravind
    Netrapalli, Praneeth
    Joachims, Thorsten
    ADVANCES IN NEURAL INFORMATION PROCESSING SYSTEMS 33, NEURIPS 2020, 2020, 33