Multi-Agent Deep Reinforcement Learning for HVAC Control in Commercial Buildings

被引:158
|
作者
Yu, Liang [1 ,2 ,3 ]
Sun, Yi [4 ]
Xu, Zhanbo [3 ]
Shen, Chao [3 ]
Yue, Dong [2 ,5 ]
Jiang, Tao [6 ]
Guan, Xiaohong [3 ]
机构
[1] Nanjing Univ Posts & Telecommun, Coll Automat, Nanjing 210003, Peoples R China
[2] Nanjing Univ Posts & Telecommun, Coll Artificial Intelligence, Nanjing 210003, Peoples R China
[3] Xi An Jiao Tong Univ, Key Lab Intelligent Networks & Network Secur, Minist Educ, Xian 710049, Peoples R China
[4] Nanjing Univ Posts & Telecommun, Coll Internet Things, Nanjing 210003, Peoples R China
[5] Nanjing Univ Posts & Telecommun, Coll Automat, Inst Adv Technol, Nanjing 210003, Peoples R China
[6] Huazhong Univ Sci & Technol, Sch Elect Informat & Commun, Wuhan Natl Lab Optoelect, Wuhan 430074, Peoples R China
基金
中国博士后科学基金; 中国国家自然科学基金;
关键词
Buildings; Air quality; Atmospheric modeling; Temperature; Heuristic algorithms; Machine learning; Fans; Commercial buildings; HVAC systems; energy cost; multi-zone coordination; random occupancy; thermal comfort; indoor air quality comfort; multi-agent deep reinforcement learning; DEMAND RESPONSE; ENERGY; SYSTEMS; SMART; MODEL; OPTIMIZATION; PRICE;
D O I
10.1109/TSG.2020.3011739
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
In commercial buildings, about 40%-50% of the total electricity consumption is attributed to Heating, Ventilation, and Air Conditioning (HVAC) systems, which places an economic burden on building operators. In this paper, we intend to minimize the energy cost of an HVAC system in a multi-zone commercial building with the consideration of random zone occupancy, thermal comfort, and indoor air quality comfort. Due to the existence of unknown thermal dynamics models, parameter uncertainties (e.g., outdoor temperature, electricity price, and number of occupants), spatially and temporally coupled constraints associated with indoor temperature and CO2 concentration, a large discrete solution space, and a non-convex and non-separable objective function, it is very challenging to achieve the above aim. To this end, the above energy cost minimization problem is reformulated as a Markov game. Then, an HVAC control algorithm is proposed to solve the Markov game based on multi-agent deep reinforcement learning with attention mechanism. The proposed algorithm does not require any prior knowledge of uncertain parameters and can operate without knowing building thermal dynamics models. Simulation results based on real-world traces show the effectiveness, robustness and scalability of the proposed algorithm.
引用
收藏
页码:407 / 419
页数:13
相关论文
共 50 条
  • [1] Optimal control method of HVAC based on multi-agent deep reinforcement learning
    Fu, Qiming
    Chen, Xiyao
    Ma, Shuai
    Fang, Nengwei
    Xing, Bin
    Chen, Jianping
    ENERGY AND BUILDINGS, 2022, 270
  • [2] Deep clustering of cooperative multi-agent reinforcement learning to optimize multi chiller HVAC systems for smart buildings energy management
    Homod, Raad Z.
    Yaseen, Zaher Mundher
    Hussein, Ahmed Kadhim
    Almusaed, Amjad
    Alawi, Omer A.
    Falah, Mayadah W.
    Abdelrazek, Ali H.
    Ahmed, Waqar
    Eltaweel, Mahmoud
    JOURNAL OF BUILDING ENGINEERING, 2023, 65
  • [3] Multi-Agent Reinforcement Learning Based Actuator Control for EV HVAC Systems
    Joo, Sungho
    Lee, Dongmin
    Kim, Minseop
    Lee, Taeho
    Choi, Sanghyeok
    Kim, Seungju
    Lee, Jeyeol
    Kim, Joongjae
    Lim, Yongsub
    Lee, Jeonghoon
    IEEE ACCESS, 2023, 11 : 7574 - 7587
  • [4] Formation Control of Multi-agent Based on Deep Reinforcement Learning
    Pan, Chao
    Nian, Xiaohong
    Dai, Xunhua
    Wang, Haibo
    Xiong, Hongyun
    PROCEEDINGS OF 2022 INTERNATIONAL CONFERENCE ON AUTONOMOUS UNMANNED SYSTEMS, ICAUS 2022, 2023, 1010 : 1149 - 1159
  • [5] Multi-agent Hierarchical Deep Reinforcement Learning for Operation Optimization of Grid-interactive Efficient Commercial Buildings
    Chen Z.
    Yu L.
    zhang S.
    Hu S.
    Shen C.
    IEEE Transactions on Artificial Intelligence, 2024, 5 (08): : 1 - 13
  • [6] HALFTONING WITH MULTI-AGENT DEEP REINFORCEMENT LEARNING
    Jiang, Haitian
    Xiong, Dongliang
    Jiang, Xiaowen
    Yin, Aiguo
    Ding, Li
    Huang, Kai
    2022 IEEE INTERNATIONAL CONFERENCE ON IMAGE PROCESSING, ICIP, 2022, : 641 - 645
  • [7] Deep reinforcement learning for multi-agent interaction
    Ahmed, Ibrahim H.
    Brewitt, Cillian
    Carlucho, Ignacio
    Christianos, Filippos
    Dunion, Mhairi
    Fosong, Elliot
    Garcin, Samuel
    Guo, Shangmin
    Gyevnar, Balint
    McInroe, Trevor
    Papoudakis, Georgios
    Rahman, Arrasy
    Schafer, Lukas
    Tamborski, Massimiliano
    Vecchio, Giuseppe
    Wang, Cheng
    Albrecht, Stefano, V
    AI COMMUNICATIONS, 2022, 35 (04) : 357 - 368
  • [8] Multi-agent deep reinforcement learning: a survey
    Sven Gronauer
    Klaus Diepold
    Artificial Intelligence Review, 2022, 55 : 895 - 943
  • [9] Lenient Multi-Agent Deep Reinforcement Learning
    Palmer, Gregory
    Tuyls, Karl
    Bloembergen, Daan
    Savani, Rahul
    PROCEEDINGS OF THE 17TH INTERNATIONAL CONFERENCE ON AUTONOMOUS AGENTS AND MULTIAGENT SYSTEMS (AAMAS' 18), 2018, : 443 - 451
  • [10] Multi-agent deep reinforcement learning: a survey
    Gronauer, Sven
    Diepold, Klaus
    ARTIFICIAL INTELLIGENCE REVIEW, 2022, 55 (02) : 895 - 943