On the comparison of Fisher information of the Weibull and GE distributions

被引:62
|
作者
Gupta, Rameshwar D.
Kundu, Debasis [1 ]
机构
[1] Indian Inst Technol, Dept Math & Stat, Kanpur 208016, Uttar Pradesh, India
[2] Univ New Brunswick, Dept Comp Sci & Stat, St John, NB E2L 4L5, Canada
关键词
Fisher information matrix; generalized exponential distribution; hazard function; median estimators; model discrimination; Type-I censoring; Weibull distribution;
D O I
10.1016/j.jspi.2004.11.013
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we consider the Fisher information matrices of the generalized exponential (GE) and Weibull distributions for complete and Type-I censored observations. Fisher information matrix can be used to compute asymptotic variances of the different estimators. Although both distributions may provide similar data fit but the corresponding Fisher information matrices can be quite different. Moreover, the percentage loss of information due to truncation of the Weibull distribution is much more than the GE distribution. We compute the total information of the Weibull and GE distributions for different parameter ranges. We compare the asymptotic variances of the median estimators and the average asymptotic variances of all the percentile estimators for complete and Type-l censored observations. One data analysis has been preformed for illustrative purposes. When two fitted distributions are very close to each other and very difficult to discriminate otherwise, the Fisher information or the above mentioned asymptotic variances may be used for discrimination purposes. (c) 2005 Published by Elsevier B.V.
引用
下载
收藏
页码:3130 / 3144
页数:15
相关论文
共 50 条
  • [21] Weibull distributions
    Lai, C. D.
    Murthy, D. N. P.
    Xie, M.
    WILEY INTERDISCIPLINARY REVIEWS-COMPUTATIONAL STATISTICS, 2011, 3 (03): : 282 - 287
  • [22] Discrete Versions of Jensen-Fisher, Fisher and Bayes-Fisher Information Measures of Finite Mixture Distributions
    Kharazmi, Omid
    Balakrishnan, Narayanaswamy
    ENTROPY, 2021, 23 (03)
  • [23] Power-law distributions and Fisher's information measure
    Pennini, F
    Plastino, A
    PHYSICA A-STATISTICAL MECHANICS AND ITS APPLICATIONS, 2004, 334 (1-2) : 132 - 138
  • [24] On the Fisher-Rao Information Metric in the Space of Normal Distributions
    Pinele, Julianna
    Costa, Sueli I. R.
    Strapasson, Joao E.
    GEOMETRIC SCIENCE OF INFORMATION, 2019, 11712 : 676 - 684
  • [26] FISHER INFORMATION AND STATISTICAL INFERENCE FOR PHASE-TYPE DISTRIBUTIONS
    Bladt, Mogens
    Esparza, Luz Judith R.
    Nielsen, Bo Friis
    JOURNAL OF APPLIED PROBABILITY, 2011, 48A : 277 - 293
  • [27] On the characterization of fisher information and stability of the least favorable lattice distributions
    Vil'chevskii N.O.
    Shevlyakov G.L.
    Journal of Mathematical Sciences, 1998, 92 (4) : 4104 - 4111
  • [28] On minimum Fisher information distributions with restricted support and fixed variance
    Bercher, J. -F.
    Vignat, C.
    INFORMATION SCIENCES, 2009, 179 (22) : 3832 - 3842
  • [29] Shrinkage Fisher Information Embedding of High Dimensional Feature Distributions
    Chen, Xu
    Chen, Yilun
    Hero, Alfred
    2011 CONFERENCE RECORD OF THE FORTY-FIFTH ASILOMAR CONFERENCE ON SIGNALS, SYSTEMS & COMPUTERS (ASILOMAR), 2011, : 1877 - 1882
  • [30] Clustering Financial Return Distributions Using the Fisher Information Metric
    Taylor, Stephen
    ENTROPY, 2019, 21 (02):