On the comparison of Fisher information of the Weibull and GE distributions

被引:62
|
作者
Gupta, Rameshwar D.
Kundu, Debasis [1 ]
机构
[1] Indian Inst Technol, Dept Math & Stat, Kanpur 208016, Uttar Pradesh, India
[2] Univ New Brunswick, Dept Comp Sci & Stat, St John, NB E2L 4L5, Canada
关键词
Fisher information matrix; generalized exponential distribution; hazard function; median estimators; model discrimination; Type-I censoring; Weibull distribution;
D O I
10.1016/j.jspi.2004.11.013
中图分类号
O21 [概率论与数理统计]; C8 [统计学];
学科分类号
020208 ; 070103 ; 0714 ;
摘要
In this paper, we consider the Fisher information matrices of the generalized exponential (GE) and Weibull distributions for complete and Type-I censored observations. Fisher information matrix can be used to compute asymptotic variances of the different estimators. Although both distributions may provide similar data fit but the corresponding Fisher information matrices can be quite different. Moreover, the percentage loss of information due to truncation of the Weibull distribution is much more than the GE distribution. We compute the total information of the Weibull and GE distributions for different parameter ranges. We compare the asymptotic variances of the median estimators and the average asymptotic variances of all the percentile estimators for complete and Type-l censored observations. One data analysis has been preformed for illustrative purposes. When two fitted distributions are very close to each other and very difficult to discriminate otherwise, the Fisher information or the above mentioned asymptotic variances may be used for discrimination purposes. (c) 2005 Published by Elsevier B.V.
引用
下载
收藏
页码:3130 / 3144
页数:15
相关论文
共 50 条
  • [1] On the comparison of fisher information of some probability distributions
    Mihoc, Ion
    Fatu, Cristina-Ioana
    CARPATHIAN JOURNAL OF MATHEMATICS, 2014, 30 (03) : 345 - 353
  • [2] Fisher information in weighted distributions
    Iyengar, S
    Kvam, P
    Singh, H
    CANADIAN JOURNAL OF STATISTICS-REVUE CANADIENNE DE STATISTIQUE, 1999, 27 (04): : 833 - 841
  • [3] On the comparison of the Fisher information of the log-normal and generalized Rayleigh distributions
    Alshunnar, Fawziah S.
    Raqab, Mohammad Z.
    Kundu, Debasis
    JOURNAL OF APPLIED STATISTICS, 2010, 37 (03) : 391 - 404
  • [4] A COMPARISON OF SOME MULTIVARIATE WEIBULL DISTRIBUTIONS
    Leira, Bernt J.
    PROCEEDINGS OF THE ASME 29TH INTERNATIONAL CONFERENCE ON OCEAN, OFFSHORE AND ARCTIC ENGINEERING 2010, VOL 2, 2010, : 475 - 484
  • [5] Fisher information and equilibrium distributions in econophysics
    Hawkins, RJ
    Frieden, BR
    PHYSICS LETTERS A, 2004, 322 (1-2) : 126 - 130
  • [6] Fisher information for two gamma frailty bivariate Weibull models
    Bjarnason, H
    Hougaard, P
    LIFETIME DATA ANALYSIS, 2000, 6 (01) : 59 - 71
  • [7] Fisher Information for Two Gamma Frailty Bivariate Weibull Models
    Helgi Bjarnason
    Philip Hougaard
    Lifetime Data Analysis, 2000, 6 : 59 - 71
  • [8] Fisher and Bayes-Fisher information measures for finite mixture distributions
    Kharazmi, Omid
    Balakrishnan, Narayanaswamy
    STOCHASTIC MODELS, 2024,
  • [9] A comparison of the generalized gamma and exponentiated Weibull distributions
    Cox, Christopher
    Matheson, Matthew
    STATISTICS IN MEDICINE, 2014, 33 (21) : 3772 - 3780
  • [10] Fisher information for the elliptically symmetric Pearson distributions
    Nadarajah, Saralees
    APPLIED MATHEMATICS AND COMPUTATION, 2006, 178 (02) : 195 - 206