Predicting Age From Brain EEG Signals-A Machine Learning Approach

被引:84
|
作者
Al Zoubi, Obada [1 ,2 ]
Wong, Chung Ki [1 ]
Kuplicki, Rayus T. [1 ]
Yeh, Hung-wen [1 ]
Mayeli, Ahmad [1 ,2 ]
Refai, Hazem [2 ]
Paulus, Martin [1 ]
Bodurka, Jerzy [1 ,3 ]
机构
[1] Laureate Inst Brain Res, Tulsa, OK 74136 USA
[2] Univ Oklahoma, Dept Elect & Comp Engn, Tulsa, OK USA
[3] Univ Oklahoma, Stephenson Sch Biomed Engn, Norman, OK 73019 USA
来源
基金
美国国家卫生研究院;
关键词
aging; human brain; EEG; machine learning; feature extraction; BrainAGE; CHILDREN; ARTIFACT; BLIND; SEX;
D O I
10.3389/fnagi.2018.00184
中图分类号
R592 [老年病学]; C [社会科学总论];
学科分类号
03 ; 0303 ; 100203 ;
摘要
Objective: The brain age gap estimate (BrainAGE) is the difference between the estimated age and the individual chronological age. BrainAGE was studied primarily using MRI techniques. EEG signals in combination with machine learning (ML) approaches were not commonly used for the human age prediction, and BrainAGE. We investigated whether age-related changes are affecting brain EEG signals, and whether we can predict the chronological age and obtain BrainAGE estimates using a rigorous ML framework with a novel and extensive EEG features extraction. Methods: EEG data were obtained from 468 healthy, mood/anxiety, eating and substance use disorder participants (297 females) from the Tulsa-1000, a naturalistic longitudinal study based on Research Domain Criteria framework. Five sets of preprocessed EEG features across channels and frequency bands were used with different ML methods to predict age. Using a nested-cross-validation (NCV) approach and stack-ensemble learning from EEG features, the predicted age was estimated. The important features and their spatial distributions were deduced. Results: The stack-ensemble age prediction model achieved R-2 = 0.37 (0.06), Mean Absolute Error (MAE) = 6.87(0.69) and RMSE = 8.46(0.59) in years. The age and predicted age correlation was r = 0.6. The feature importance revealed that age predictors are spread out across different feature types. The NCV approach produced a reliable age estimation, with features consistent behavior across different folds. Conclusion: Our rigorous ML framework and extensive EEG signal features allow a reliable estimation of chronological age, and BrainAGE. This general framework can be extended to test EEG association with and to predict/study other physiological relevant responses.
引用
收藏
页数:12
相关论文
共 50 条
  • [31] Emotion Detection from EEG Signals Using Machine Deep Learning Models
    Fernandes, Joao Vitor Marques Rabelo
    de Alexandria, Auzuir Ripardo
    Marques, Joao Alexandre Lobo
    de Assis, Debora Ferreira
    Motta, Pedro Crosara
    Silva, Bruno Riccelli dos Santos
    BIOENGINEERING-BASEL, 2024, 11 (08):
  • [32] Classification of Hand Movements from EEG Signals using Machine Learning Techniques
    Sayilgan, Ebru
    Yuce, Yilmaz Kemal
    Isler, Yalcin
    2019 INNOVATIONS IN INTELLIGENT SYSTEMS AND APPLICATIONS CONFERENCE (ASYU), 2019, : 94 - 97
  • [33] Mental Workload Estimation from EEG Signals Using Machine Learning Algorithms
    Cheema, Baljeet Singh
    Samima, Shabnam
    Sarma, Monalisa
    Samanta, Debasis
    ENGINEERING PSYCHOLOGY AND COGNITIVE ERGONOMICS (EPCE 2018), 2018, 10906 : 265 - 284
  • [34] Optimized machine learning model for Alzheimer and epilepsy detection from EEG signals
    Jasphin Jeni Sharmila, P.
    Shiny Angel, T. S.
    AUTOMATIKA, 2024, 65 (02) : 597 - 608
  • [35] Hybrid Machine Learning Scheme for Classification of BECTS and TLE Patients Using EEG Brain Signals
    Yang, Wonsik
    Joo, Minsoo
    Kim, Yujaung
    Kim, Se Hee
    Chung, Jong-Moon
    IEEE ACCESS, 2020, 8 : 218924 - 218935
  • [36] Predicting brain age based on sleep EEG and DenseNet
    Yook, Soonhyun
    Miao, Yizhan
    Park, Claire
    Park, Hea Rec
    Kim, Jinyoung
    Lim, Diane C.
    Joo, Eun Yeon
    Kim, Hosung
    2021 43RD ANNUAL INTERNATIONAL CONFERENCE OF THE IEEE ENGINEERING IN MEDICINE & BIOLOGY SOCIETY (EMBC), 2021, : 245 - 248
  • [37] From fundamental signals to stock volatility: A machine learning approach
    Liao, Cunfei
    Ma, Tian
    PACIFIC-BASIN FINANCE JOURNAL, 2024, 84
  • [38] EEG-PML: A Software for Processing and Machine Learning Analysis of EEG Signals
    Gwendolyn Alvarado-Robles, Lluvia
    Miguel Munguia-Nava, Carlos
    Roman-Godinez, Israel
    Antonio Salido-Ruiz, Ricardo
    Torres-Ramos, Sulema
    VIII LATIN AMERICAN CONFERENCE ON BIOMEDICAL ENGINEERING AND XLII NATIONAL CONFERENCE ON BIOMEDICAL ENGINEERING, 2020, 75 : 3 - 11
  • [39] Automatic Seizure Identification from EEG Signals Based on Brain Connectivity Learning
    Zhao, Yanna
    Xue, Mingrui
    Dong, Changxu
    He, Jiatong
    Chu, Dengyu
    Zhang, Gaobo
    Xu, Fangzhou
    Ge, Xinting
    Zheng, Yuanjie
    INTERNATIONAL JOURNAL OF NEURAL SYSTEMS, 2022, 32 (11)
  • [40] A novel Machine Learning approach for epilepsy diagnosis using EEG signals based on Correlation Dimension
    Brari, Zayneb
    Belghith, Safya
    IFAC PAPERSONLINE, 2021, 54 (17): : 7 - 11