High temperature molecular motions within a model protomembrane architecture

被引:3
|
作者
Misuraca, Loreto [1 ,2 ]
Matsuo, Tatsuhito [1 ,2 ,3 ]
Cisse, Aline [1 ,2 ]
LoRicco, Josephine [4 ]
Calio, Antonio [4 ]
Zanotti, Jean-Marc [6 ]
Deme, Bruno [2 ]
Oger, Philippe [4 ]
Peters, Judith [1 ,2 ,5 ]
机构
[1] Univ Grenoble Alpes, LIPhy, CNRS, F-38000 Grenoble, France
[2] Inst Laue Langevin, F-38042 Grenoble 9, France
[3] Natl Inst Quantum Sci & Technol, Inst Quantum Life Sci, 2-4 Shirakata, Tokai, Ibaraki 3191106, Japan
[4] Univ Lyon, UMR5240, CNRS, INSA Lyon, Villeurbanne, France
[5] Inst Univ France, Paris, France
[6] Univ Paris Saclay, Lab Leon Brillouin, CEA Saclay, CEA,CNRS, F-91191 Gif Sur Yvette, France
关键词
MONOCARBOXYLIC ACIDS; NEUTRON-SCATTERING; DIFFUSIVE MOTIONS; VESICLES; DYNAMICS; MEMBRANES; WATER;
D O I
10.1039/d2cp01205g
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
Modern phospholipid membranes are known to be in a functional, physiological state, corresponding to the liquid crystalline phase, only under very precise external conditions. The phase is characterised by specific lipid motions, which seem mandatory to permit sufficient flexibility and stability for the membrane. It can be assumed that similar principles hold for proto-membranes at the origin of life although they were likely composed of simpler, single chain fatty acids and alcohols. In the present study we investigated molecular motions of four types of model membranes to shed light on the variations of dynamics and structure from low to high temperature as protocells might have existed close to hot vents. We find a clear hierarchy among the flexibilities of the samples, where some structural parameters seem to depend on the lipid type used while others do not.
引用
收藏
页码:15083 / 15090
页数:8
相关论文
共 50 条
  • [21] SIMPLE-MODEL OF BLOCH LINE MOTIONS WITHIN THE DOMAIN BOUNDARY
    ZVEZDIN, AK
    POPKOV, AF
    REDKO, VG
    ZHURNAL TEKHNICHESKOI FIZIKI, 1985, 55 (09): : 1884 - 1886
  • [22] Temperature dependence of molecular motions in the membrane protein bacteriorhodopsin from QINS
    Fitter, J
    Lechner, RE
    Buldt, G
    Dencher, NA
    PHYSICA B-CONDENSED MATTER, 1996, 226 (1-3) : 61 - 65
  • [23] TEMPERATURE-DEPENDENCE OF MOLECULAR MOTIONS IN NAPHTHALENE AND ANTHRACENE-CRYSTALS
    VOVELLE, F
    CHEDIN, MP
    DUMAS, GG
    MOLECULAR CRYSTALS AND LIQUID CRYSTALS, 1978, 48 (3-4): : 261 - 271
  • [24] Molecular motions in glassy polycarbonate below its glass transition temperature
    Arrese-Igor, Silvia
    Mitxelena, Olatz
    Arbe, Arantxa
    Alegria, Angel
    Colmenero, Juan
    Frick, Bernhard
    JOURNAL OF NON-CRYSTALLINE SOLIDS, 2006, 352 (42-49) : 5072 - 5075
  • [25] CONCENTRATION AND TEMPERATURE-DEPENDENCE OF MOLECULAR MOTIONS IN POLYSTYRENE TETRAHYDROFURAN SOLUTIONS
    JOHNSON, BS
    EDIGER, MD
    YAMAGUCHI, Y
    MATSUSHITA, Y
    NODA, I
    POLYMER, 1992, 33 (18) : 3916 - 3929
  • [26] Molecular dynamics model for nano-motions of FePd nanohelices
    Taya, M.
    Xu, C.
    Matsuse, T.
    Muraishi, S.
    JOURNAL OF APPLIED PHYSICS, 2017, 121 (15)
  • [27] Distinct critical fluctuations and molecular motions manifest in a model biomembrane
    Lee, KW
    Lee, CE
    Choi, JY
    Kim, J
    SOLID STATE COMMUNICATIONS, 2005, 133 (02) : 83 - 88
  • [28] Embedding requirements within Model-Driven Architecture
    Fouad, Ali
    Phalp, Keith
    Kanyaru, John Mathenge
    Jeary, Sheridan
    SOFTWARE QUALITY JOURNAL, 2011, 19 (02) : 411 - 430
  • [29] Embedding requirements within Model-Driven Architecture
    Ali Fouad
    Keith Phalp
    John Mathenge Kanyaru
    Sheridan Jeary
    Software Quality Journal, 2011, 19 : 411 - 430
  • [30] A MOLECULAR-MODEL FOR COOPERATIVE LOCAL MOTIONS IN AMORPHOUS POLYMERS
    ADACHI, K
    MACROMOLECULES, 1990, 23 (06) : 1816 - 1821